From 76729f9670ba63a9146079b081bdb5b5ae0bbd3d Mon Sep 17 00:00:00 2001 From: Kenny Ballou Date: Fri, 28 Feb 2020 15:36:09 -0700 Subject: CASA fork: initial commit Snapshot from http://cse.unl.edu/~citportal/. --- minisat/solver/Solver.C | 746 ++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 746 insertions(+) create mode 100644 minisat/solver/Solver.C (limited to 'minisat/solver/Solver.C') diff --git a/minisat/solver/Solver.C b/minisat/solver/Solver.C new file mode 100644 index 0000000..54b45d9 --- /dev/null +++ b/minisat/solver/Solver.C @@ -0,0 +1,746 @@ +/****************************************************************************************[Solver.C] +MiniSat -- Copyright (c) 2003-2006, Niklas Een, Niklas Sorensson + +Permission is hereby granted, free of charge, to any person obtaining a copy of this software and +associated documentation files (the "Software"), to deal in the Software without restriction, +including without limitation the rights to use, copy, modify, merge, publish, distribute, +sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is +furnished to do so, subject to the following conditions: + +The above copyright notice and this permission notice shall be included in all copies or +substantial portions of the Software. + +THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT +NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND +NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, +DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT +OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. +**************************************************************************************************/ + +#include "Solver.H" +#include "Sort.h" +#include + + +//================================================================================================= +// Constructor/Destructor: + + +Solver::Solver() : + + // Parameters: (formerly in 'SearchParams') + var_decay(1 / 0.95), clause_decay(1 / 0.999), random_var_freq(0.02) + , restart_first(100), restart_inc(1.5), learntsize_factor((double)1/(double)3), learntsize_inc(1.1) + + // More parameters: + // + , expensive_ccmin (true) + , polarity_mode (polarity_false) + , verbosity (0) + + // Statistics: (formerly in 'SolverStats') + // + , starts(0), decisions(0), rnd_decisions(0), propagations(0), conflicts(0) + , clauses_literals(0), learnts_literals(0), max_literals(0), tot_literals(0) + + , ok (true) + , cla_inc (1) + , var_inc (1) + , qhead (0) + , simpDB_assigns (-1) + , simpDB_props (0) + , order_heap (VarOrderLt(activity)) + , random_seed (91648253) + , progress_estimate(0) + , remove_satisfied (true) +{} + + +Solver::~Solver() +{ + for (int i = 0; i < learnts.size(); i++) free(learnts[i]); + for (int i = 0; i < clauses.size(); i++) free(clauses[i]); +} + + +//================================================================================================= +// Minor methods: + + +// Creates a new SAT variable in the solver. If 'decision_var' is cleared, variable will not be +// used as a decision variable (NOTE! This has effects on the meaning of a SATISFIABLE result). +// +Var Solver::newVar(bool sign, bool dvar) +{ + int v = nVars(); + watches .push(); // (list for positive literal) + watches .push(); // (list for negative literal) + reason .push(NULL); + assigns .push(toInt(l_Undef)); + level .push(-1); + activity .push(0); + seen .push(0); + + polarity .push((char)sign); + decision_var.push((char)dvar); + + insertVarOrder(v); + return v; +} + + +bool Solver::addClause(vec& ps) +{ + assert(decisionLevel() == 0); + + if (!ok) + return false; + else{ + // Check if clause is satisfied and remove false/duplicate literals: + sort(ps); + Lit p; int i, j; + for (i = j = 0, p = lit_Undef; i < ps.size(); i++) + if (value(ps[i]) == l_True || ps[i] == ~p) + return true; + else if (value(ps[i]) != l_False && ps[i] != p) + ps[j++] = p = ps[i]; + ps.shrink(i - j); + } + + if (ps.size() == 0) + return ok = false; + else if (ps.size() == 1){ + assert(value(ps[0]) == l_Undef); + uncheckedEnqueue(ps[0]); + return ok = (propagate() == NULL); + }else{ + Clause* c = Clause_new(ps, false); + clauses.push(c); + attachClause(*c); + } + + return true; +} + + +void Solver::attachClause(Clause& c) { + assert(c.size() > 1); + watches[toInt(~c[0])].push(&c); + watches[toInt(~c[1])].push(&c); + if (c.learnt()) learnts_literals += c.size(); + else clauses_literals += c.size(); } + + +void Solver::detachClause(Clause& c) { + assert(c.size() > 1); + assert(find(watches[toInt(~c[0])], &c)); + assert(find(watches[toInt(~c[1])], &c)); + remove(watches[toInt(~c[0])], &c); + remove(watches[toInt(~c[1])], &c); + if (c.learnt()) learnts_literals -= c.size(); + else clauses_literals -= c.size(); } + + +void Solver::removeClause(Clause& c) { + detachClause(c); + free(&c); } + + +bool Solver::satisfied(const Clause& c) const { + for (int i = 0; i < c.size(); i++) + if (value(c[i]) == l_True) + return true; + return false; } + + +// Revert to the state at given level (keeping all assignment at 'level' but not beyond). +// +void Solver::cancelUntil(int level) { + if (decisionLevel() > level){ + for (int c = trail.size()-1; c >= trail_lim[level]; c--){ + Var x = var(trail[c]); + assigns[x] = toInt(l_Undef); + insertVarOrder(x); } + qhead = trail_lim[level]; + trail.shrink(trail.size() - trail_lim[level]); + trail_lim.shrink(trail_lim.size() - level); + } } + + +//================================================================================================= +// Major methods: + + +Lit Solver::pickBranchLit(int polarity_mode, double random_var_freq) +{ + Var next = var_Undef; + + // Random decision: + if (drand(random_seed) < random_var_freq && !order_heap.empty()){ + next = order_heap[irand(random_seed,order_heap.size())]; + if (toLbool(assigns[next]) == l_Undef && decision_var[next]) + rnd_decisions++; } + + // Activity based decision: + while (next == var_Undef || toLbool(assigns[next]) != l_Undef || !decision_var[next]) + if (order_heap.empty()){ + next = var_Undef; + break; + }else + next = order_heap.removeMin(); + + bool sign = false; + switch (polarity_mode){ + case polarity_true: sign = false; break; + case polarity_false: sign = true; break; + case polarity_user: sign = polarity[next]; break; + case polarity_rnd: sign = irand(random_seed, 2); break; + default: assert(false); } + + return next == var_Undef ? lit_Undef : Lit(next, sign); +} + + +/*_________________________________________________________________________________________________ +| +| analyze : (confl : Clause*) (out_learnt : vec&) (out_btlevel : int&) -> [void] +| +| Description: +| Analyze conflict and produce a reason clause. +| +| Pre-conditions: +| * 'out_learnt' is assumed to be cleared. +| * Current decision level must be greater than root level. +| +| Post-conditions: +| * 'out_learnt[0]' is the asserting literal at level 'out_btlevel'. +| +| Effect: +| Will undo part of the trail, upto but not beyond the assumption of the current decision level. +|________________________________________________________________________________________________@*/ +void Solver::analyze(Clause* confl, vec& out_learnt, int& out_btlevel) +{ + int pathC = 0; + Lit p = lit_Undef; + + // Generate conflict clause: + // + out_learnt.push(); // (leave room for the asserting literal) + int index = trail.size() - 1; + out_btlevel = 0; + + do{ + assert(confl != NULL); // (otherwise should be UIP) + Clause& c = *confl; + + if (c.learnt()) + claBumpActivity(c); + + for (int j = (p == lit_Undef) ? 0 : 1; j < c.size(); j++){ + Lit q = c[j]; + + if (!seen[var(q)] && level[var(q)] > 0){ + varBumpActivity(var(q)); + seen[var(q)] = 1; + if (level[var(q)] >= decisionLevel()) + pathC++; + else{ + out_learnt.push(q); + if (level[var(q)] > out_btlevel) + out_btlevel = level[var(q)]; + } + } + } + + // Select next clause to look at: + while (!seen[var(trail[index--])]); + p = trail[index+1]; + confl = reason[var(p)]; + seen[var(p)] = 0; + pathC--; + + }while (pathC > 0); + out_learnt[0] = ~p; + + // Simplify conflict clause: + // + int i, j; + if (expensive_ccmin){ + uint32_t abstract_level = 0; + for (i = 1; i < out_learnt.size(); i++) + abstract_level |= abstractLevel(var(out_learnt[i])); // (maintain an abstraction of levels involved in conflict) + + out_learnt.copyTo(analyze_toclear); + for (i = j = 1; i < out_learnt.size(); i++) + if (reason[var(out_learnt[i])] == NULL || !litRedundant(out_learnt[i], abstract_level)) + out_learnt[j++] = out_learnt[i]; + }else{ + out_learnt.copyTo(analyze_toclear); + for (i = j = 1; i < out_learnt.size(); i++){ + Clause& c = *reason[var(out_learnt[i])]; + for (int k = 1; k < c.size(); k++) + if (!seen[var(c[k])] && level[var(c[k])] > 0){ + out_learnt[j++] = out_learnt[i]; + break; } + } + } + max_literals += out_learnt.size(); + out_learnt.shrink(i - j); + tot_literals += out_learnt.size(); + + // Find correct backtrack level: + // + if (out_learnt.size() == 1) + out_btlevel = 0; + else{ + int max_i = 1; + for (int i = 2; i < out_learnt.size(); i++) + if (level[var(out_learnt[i])] > level[var(out_learnt[max_i])]) + max_i = i; + Lit p = out_learnt[max_i]; + out_learnt[max_i] = out_learnt[1]; + out_learnt[1] = p; + out_btlevel = level[var(p)]; + } + + + for (int j = 0; j < analyze_toclear.size(); j++) seen[var(analyze_toclear[j])] = 0; // ('seen[]' is now cleared) +} + + +// Check if 'p' can be removed. 'abstract_levels' is used to abort early if the algorithm is +// visiting literals at levels that cannot be removed later. +bool Solver::litRedundant(Lit p, uint32_t abstract_levels) +{ + analyze_stack.clear(); analyze_stack.push(p); + int top = analyze_toclear.size(); + while (analyze_stack.size() > 0){ + assert(reason[var(analyze_stack.last())] != NULL); + Clause& c = *reason[var(analyze_stack.last())]; analyze_stack.pop(); + + for (int i = 1; i < c.size(); i++){ + Lit p = c[i]; + if (!seen[var(p)] && level[var(p)] > 0){ + if (reason[var(p)] != NULL && (abstractLevel(var(p)) & abstract_levels) != 0){ + seen[var(p)] = 1; + analyze_stack.push(p); + analyze_toclear.push(p); + }else{ + for (int j = top; j < analyze_toclear.size(); j++) + seen[var(analyze_toclear[j])] = 0; + analyze_toclear.shrink(analyze_toclear.size() - top); + return false; + } + } + } + } + + return true; +} + + +/*_________________________________________________________________________________________________ +| +| analyzeFinal : (p : Lit) -> [void] +| +| Description: +| Specialized analysis procedure to express the final conflict in terms of assumptions. +| Calculates the (possibly empty) set of assumptions that led to the assignment of 'p', and +| stores the result in 'out_conflict'. +|________________________________________________________________________________________________@*/ +void Solver::analyzeFinal(Lit p, vec& out_conflict) +{ + out_conflict.clear(); + out_conflict.push(p); + + if (decisionLevel() == 0) + return; + + seen[var(p)] = 1; + + for (int i = trail.size()-1; i >= trail_lim[0]; i--){ + Var x = var(trail[i]); + if (seen[x]){ + if (reason[x] == NULL){ + assert(level[x] > 0); + out_conflict.push(~trail[i]); + }else{ + Clause& c = *reason[x]; + for (int j = 1; j < c.size(); j++) + if (level[var(c[j])] > 0) + seen[var(c[j])] = 1; + } + seen[x] = 0; + } + } + + seen[var(p)] = 0; +} + + +void Solver::uncheckedEnqueue(Lit p, Clause* from) +{ + assert(value(p) == l_Undef); + assigns [var(p)] = toInt(lbool(!sign(p))); // <<== abstract but not uttermost effecient + level [var(p)] = decisionLevel(); + reason [var(p)] = from; + trail.push(p); +} + + +/*_________________________________________________________________________________________________ +| +| propagate : [void] -> [Clause*] +| +| Description: +| Propagates all enqueued facts. If a conflict arises, the conflicting clause is returned, +| otherwise NULL. +| +| Post-conditions: +| * the propagation queue is empty, even if there was a conflict. +|________________________________________________________________________________________________@*/ +Clause* Solver::propagate() +{ + Clause* confl = NULL; + int num_props = 0; + + while (qhead < trail.size()){ + Lit p = trail[qhead++]; // 'p' is enqueued fact to propagate. + vec& ws = watches[toInt(p)]; + Clause **i, **j, **end; + num_props++; + + for (i = j = (Clause**)ws, end = i + ws.size(); i != end;){ + Clause& c = **i++; + + // Make sure the false literal is data[1]: + Lit false_lit = ~p; + if (c[0] == false_lit) + c[0] = c[1], c[1] = false_lit; + + assert(c[1] == false_lit); + + // If 0th watch is true, then clause is already satisfied. + Lit first = c[0]; + if (value(first) == l_True){ + *j++ = &c; + }else{ + // Look for new watch: + for (int k = 2; k < c.size(); k++) + if (value(c[k]) != l_False){ + c[1] = c[k]; c[k] = false_lit; + watches[toInt(~c[1])].push(&c); + goto FoundWatch; } + + // Did not find watch -- clause is unit under assignment: + *j++ = &c; + if (value(first) == l_False){ + confl = &c; + qhead = trail.size(); + // Copy the remaining watches: + while (i < end) + *j++ = *i++; + }else + uncheckedEnqueue(first, &c); + } + FoundWatch:; + } + ws.shrink(i - j); + } + propagations += num_props; + simpDB_props -= num_props; + + return confl; +} + +/*_________________________________________________________________________________________________ +| +| reduceDB : () -> [void] +| +| Description: +| Remove half of the learnt clauses, minus the clauses locked by the current assignment. Locked +| clauses are clauses that are reason to some assignment. Binary clauses are never removed. +|________________________________________________________________________________________________@*/ +struct reduceDB_lt { bool operator () (Clause* x, Clause* y) { return x->size() > 2 && (y->size() == 2 || x->activity() < y->activity()); } }; +void Solver::reduceDB() +{ + int i, j; + double extra_lim = cla_inc / learnts.size(); // Remove any clause below this activity + + sort(learnts, reduceDB_lt()); + for (i = j = 0; i < learnts.size() / 2; i++){ + if (learnts[i]->size() > 2 && !locked(*learnts[i])) + removeClause(*learnts[i]); + else + learnts[j++] = learnts[i]; + } + for (; i < learnts.size(); i++){ + if (learnts[i]->size() > 2 && !locked(*learnts[i]) && learnts[i]->activity() < extra_lim) + removeClause(*learnts[i]); + else + learnts[j++] = learnts[i]; + } + learnts.shrink(i - j); +} + + +void Solver::removeSatisfied(vec& cs) +{ + int i,j; + for (i = j = 0; i < cs.size(); i++){ + if (satisfied(*cs[i])) + removeClause(*cs[i]); + else + cs[j++] = cs[i]; + } + cs.shrink(i - j); +} + + +/*_________________________________________________________________________________________________ +| +| simplify : [void] -> [bool] +| +| Description: +| Simplify the clause database according to the current top-level assigment. Currently, the only +| thing done here is the removal of satisfied clauses, but more things can be put here. +|________________________________________________________________________________________________@*/ +bool Solver::simplify() +{ + assert(decisionLevel() == 0); + + if (!ok || propagate() != NULL) + return ok = false; + + if (nAssigns() == simpDB_assigns || (simpDB_props > 0)) + return true; + + // Remove satisfied clauses: + removeSatisfied(learnts); + if (remove_satisfied) // Can be turned off. + removeSatisfied(clauses); + + // Remove fixed variables from the variable heap: + order_heap.filter(VarFilter(*this)); + + simpDB_assigns = nAssigns(); + simpDB_props = clauses_literals + learnts_literals; // (shouldn't depend on stats really, but it will do for now) + + return true; +} + + +/*_________________________________________________________________________________________________ +| +| search : (nof_conflicts : int) (nof_learnts : int) (params : const SearchParams&) -> [lbool] +| +| Description: +| Search for a model the specified number of conflicts, keeping the number of learnt clauses +| below the provided limit. NOTE! Use negative value for 'nof_conflicts' or 'nof_learnts' to +| indicate infinity. +| +| Output: +| 'l_True' if a partial assigment that is consistent with respect to the clauseset is found. If +| all variables are decision variables, this means that the clause set is satisfiable. 'l_False' +| if the clause set is unsatisfiable. 'l_Undef' if the bound on number of conflicts is reached. +|________________________________________________________________________________________________@*/ +lbool Solver::search(int nof_conflicts, int nof_learnts) +{ + assert(ok); + int backtrack_level; + int conflictC = 0; + vec learnt_clause; + + starts++; + + bool first = true; + (void)first; + + for (;;){ + Clause* confl = propagate(); + if (confl != NULL){ + // CONFLICT + conflicts++; conflictC++; + if (decisionLevel() == 0) return l_False; + + first = false; + + learnt_clause.clear(); + analyze(confl, learnt_clause, backtrack_level); + cancelUntil(backtrack_level); + assert(value(learnt_clause[0]) == l_Undef); + + if (learnt_clause.size() == 1){ + uncheckedEnqueue(learnt_clause[0]); + }else{ + Clause* c = Clause_new(learnt_clause, true); + learnts.push(c); + attachClause(*c); + claBumpActivity(*c); + uncheckedEnqueue(learnt_clause[0], c); + } + + varDecayActivity(); + claDecayActivity(); + + }else{ + // NO CONFLICT + + if (nof_conflicts >= 0 && conflictC >= nof_conflicts){ + // Reached bound on number of conflicts: + progress_estimate = progressEstimate(); + cancelUntil(0); + return l_Undef; } + + // Simplify the set of problem clauses: + if (decisionLevel() == 0 && !simplify()) + return l_False; + + if (nof_learnts >= 0 && learnts.size()-nAssigns() >= nof_learnts) + // Reduce the set of learnt clauses: + reduceDB(); + + Lit next = lit_Undef; + while (decisionLevel() < assumptions.size()){ + // Perform user provided assumption: + Lit p = assumptions[decisionLevel()]; + if (value(p) == l_True){ + // Dummy decision level: + newDecisionLevel(); + }else if (value(p) == l_False){ + analyzeFinal(~p, conflict); + return l_False; + }else{ + next = p; + break; + } + } + + if (next == lit_Undef){ + // New variable decision: + decisions++; + next = pickBranchLit(polarity_mode, random_var_freq); + + if (next == lit_Undef) + // Model found: + return l_True; + } + + // Increase decision level and enqueue 'next' + assert(value(next) == l_Undef); + newDecisionLevel(); + uncheckedEnqueue(next); + } + } +} + + +double Solver::progressEstimate() const +{ + double progress = 0; + double F = 1.0 / nVars(); + + for (int i = 0; i <= decisionLevel(); i++){ + int beg = i == 0 ? 0 : trail_lim[i - 1]; + int end = i == decisionLevel() ? trail.size() : trail_lim[i]; + progress += pow(F, i) * (end - beg); + } + + return progress / nVars(); +} + + +bool Solver::solve(const vec& assumps,bool cleanup) +{ + model.clear(); + conflict.clear(); + + if (!ok) return false; + + assumps.copyTo(assumptions); + + double nof_conflicts = restart_first; + double nof_learnts = nClauses() * learntsize_factor; + lbool status = l_Undef; + + if (verbosity >= 1){ + reportf("============================[ Search Statistics ]==============================\n"); + reportf("| Conflicts | ORIGINAL | LEARNT | Progress |\n"); + reportf("| | Vars Clauses Literals | Limit Clauses Lit/Cl | |\n"); + reportf("===============================================================================\n"); + } + + // Search: + while (status == l_Undef){ + if (verbosity >= 1) + reportf("| %9d | %7d %8d %8d | %8d %8d %6.0f | %6.3f %% |\n", (int)conflicts, order_heap.size(), nClauses(), (int)clauses_literals, (int)nof_learnts, nLearnts(), (double)learnts_literals/nLearnts(), progress_estimate*100), fflush(stdout); + status = search((int)nof_conflicts, (int)nof_learnts); + nof_conflicts *= restart_inc; + nof_learnts *= learntsize_inc; + } + + if (verbosity >= 1) + reportf("===============================================================================\n"); + + + if (status == l_True){ + // Extend & copy model: + model.growTo(nVars()); + for (int i = 0; i < nVars(); i++) model[i] = value(i); +#ifndef NDEBUG + verifyModel(); +#endif + }else{ + assert(status == l_False); + if (conflict.size() == 0) + ok = false; + } + + if(cleanup) cancelUntil(0); + return status == l_True; +} + +void Solver::clearTrail(){ + cancelUntil(0); +} + +//================================================================================================= +// Debug methods: + + +void Solver::verifyModel() +{ + bool failed = false; + for (int i = 0; i < clauses.size(); i++){ + assert(clauses[i]->mark() == 0); + Clause& c = *clauses[i]; + for (int j = 0; j < c.size(); j++) + if (modelValue(c[j]) == l_True) + goto next; + + reportf("unsatisfied clause: "); + printClause(*clauses[i]); + reportf("\n"); + failed = true; + next:; + } + + assert(!failed); + + ///reportf("Verified %d original clauses.\n", clauses.size()); +} + + +void Solver::checkLiteralCount() +{ + // Check that sizes are calculated correctly: + int cnt = 0; + for (int i = 0; i < clauses.size(); i++) + if (clauses[i]->mark() == 0) + cnt += clauses[i]->size(); + + if ((int)clauses_literals != cnt){ + fprintf(stderr, "literal count: %d, real value = %d\n", (int)clauses_literals, cnt); + assert((int)clauses_literals == cnt); + } +} -- cgit v1.2.1