#include "builtin.h" #include "cache.h" #include "attr.h" #include "object.h" #include "blob.h" #include "commit.h" #include "tag.h" #include "tree.h" #include "delta.h" #include "pack.h" #include "csum-file.h" #include "tree-walk.h" #include "diff.h" #include "revision.h" #include "list-objects.h" #include "progress.h" static const char pack_usage[] = "\ git-pack-objects [{ -q | --progress | --all-progress }] [--max-pack-size=N] \n\ [--local] [--incremental] [--window=N] [--depth=N] \n\ [--no-reuse-delta] [--no-reuse-object] [--delta-base-offset] \n\ [--non-empty] [--revs [--unpacked | --all]*] [--reflog] \n\ [--stdout | base-name] [> 16); /* defeat structure alignment */ i = (int)(ui % pack_revindex_hashsz); while (pack_revindex[i].p) { if (pack_revindex[i].p == p) return i; if (++i == pack_revindex_hashsz) i = 0; } return -1 - i; } static void prepare_pack_ix(void) { int num; struct packed_git *p; for (num = 0, p = packed_git; p; p = p->next) num++; if (!num) return; pack_revindex_hashsz = num * 11; pack_revindex = xcalloc(sizeof(*pack_revindex), pack_revindex_hashsz); for (p = packed_git; p; p = p->next) { num = pack_revindex_ix(p); num = - 1 - num; pack_revindex[num].p = p; } /* revindex elements are lazily initialized */ } static int cmp_offset(const void *a_, const void *b_) { const struct revindex_entry *a = a_; const struct revindex_entry *b = b_; return (a->offset < b->offset) ? -1 : (a->offset > b->offset) ? 1 : 0; } /* * Ordered list of offsets of objects in the pack. */ static void prepare_pack_revindex(struct pack_revindex *rix) { struct packed_git *p = rix->p; int num_ent = p->num_objects; int i; const char *index = p->index_data; rix->revindex = xmalloc(sizeof(*rix->revindex) * (num_ent + 1)); index += 4 * 256; if (p->index_version > 1) { const uint32_t *off_32 = (uint32_t *)(index + 8 + p->num_objects * (20 + 4)); const uint32_t *off_64 = off_32 + p->num_objects; for (i = 0; i < num_ent; i++) { uint32_t off = ntohl(*off_32++); if (!(off & 0x80000000)) { rix->revindex[i].offset = off; } else { rix->revindex[i].offset = ((uint64_t)ntohl(*off_64++)) << 32; rix->revindex[i].offset |= ntohl(*off_64++); } rix->revindex[i].nr = i; } } else { for (i = 0; i < num_ent; i++) { uint32_t hl = *((uint32_t *)(index + 24 * i)); rix->revindex[i].offset = ntohl(hl); rix->revindex[i].nr = i; } } /* This knows the pack format -- the 20-byte trailer * follows immediately after the last object data. */ rix->revindex[num_ent].offset = p->pack_size - 20; rix->revindex[num_ent].nr = -1; qsort(rix->revindex, num_ent, sizeof(*rix->revindex), cmp_offset); } static struct revindex_entry * find_packed_object(struct packed_git *p, off_t ofs) { int num; int lo, hi; struct pack_revindex *rix; struct revindex_entry *revindex; num = pack_revindex_ix(p); if (num < 0) die("internal error: pack revindex uninitialized"); rix = &pack_revindex[num]; if (!rix->revindex) prepare_pack_revindex(rix); revindex = rix->revindex; lo = 0; hi = p->num_objects + 1; do { int mi = (lo + hi) / 2; if (revindex[mi].offset == ofs) { return revindex + mi; } else if (ofs < revindex[mi].offset) hi = mi; else lo = mi + 1; } while (lo < hi); die("internal error: pack revindex corrupt"); } static const unsigned char *find_packed_object_name(struct packed_git *p, off_t ofs) { struct revindex_entry *entry = find_packed_object(p, ofs); return nth_packed_object_sha1(p, entry->nr); } static void *delta_against(void *buf, unsigned long size, struct object_entry *entry) { unsigned long othersize, delta_size; enum object_type type; void *otherbuf = read_sha1_file(entry->delta->sha1, &type, &othersize); void *delta_buf; if (!otherbuf) die("unable to read %s", sha1_to_hex(entry->delta->sha1)); delta_buf = diff_delta(otherbuf, othersize, buf, size, &delta_size, 0); if (!delta_buf || delta_size != entry->delta_size) die("delta size changed"); free(buf); free(otherbuf); return delta_buf; } /* * The per-object header is a pretty dense thing, which is * - first byte: low four bits are "size", then three bits of "type", * and the high bit is "size continues". * - each byte afterwards: low seven bits are size continuation, * with the high bit being "size continues" */ static int encode_header(enum object_type type, unsigned long size, unsigned char *hdr) { int n = 1; unsigned char c; if (type < OBJ_COMMIT || type > OBJ_REF_DELTA) die("bad type %d", type); c = (type << 4) | (size & 15); size >>= 4; while (size) { *hdr++ = c | 0x80; c = size & 0x7f; size >>= 7; n++; } *hdr = c; return n; } /* * we are going to reuse the existing object data as is. make * sure it is not corrupt. */ static int check_pack_inflate(struct packed_git *p, struct pack_window **w_curs, off_t offset, off_t len, unsigned long expect) { z_stream stream; unsigned char fakebuf[4096], *in; int st; memset(&stream, 0, sizeof(stream)); inflateInit(&stream); do { in = use_pack(p, w_curs, offset, &stream.avail_in); stream.next_in = in; stream.next_out = fakebuf; stream.avail_out = sizeof(fakebuf); st = inflate(&stream, Z_FINISH); offset += stream.next_in - in; } while (st == Z_OK || st == Z_BUF_ERROR); inflateEnd(&stream); return (st == Z_STREAM_END && stream.total_out == expect && stream.total_in == len) ? 0 : -1; } static int check_pack_crc(struct packed_git *p, struct pack_window **w_curs, off_t offset, off_t len, unsigned int nr) { const uint32_t *index_crc; uint32_t data_crc = crc32(0, Z_NULL, 0); do { unsigned int avail; void *data = use_pack(p, w_curs, offset, &avail); if (avail > len) avail = len; data_crc = crc32(data_crc, data, avail); offset += avail; len -= avail; } while (len); index_crc = p->index_data; index_crc += 2 + 256 + p->num_objects * (20/4) + nr; return data_crc != ntohl(*index_crc); } static void copy_pack_data(struct sha1file *f, struct packed_git *p, struct pack_window **w_curs, off_t offset, off_t len) { unsigned char *in; unsigned int avail; while (len) { in = use_pack(p, w_curs, offset, &avail); if (avail > len) avail = (unsigned int)len; sha1write(f, in, avail); offset += avail; len -= avail; } } static unsigned long write_object(struct sha1file *f, struct object_entry *entry, off_t write_offset) { unsigned long size; enum object_type type; void *buf; unsigned char header[10]; unsigned char dheader[10]; unsigned hdrlen; off_t datalen; enum object_type obj_type; int to_reuse = 0; /* write limit if limited packsize and not first object */ unsigned long limit = pack_size_limit && nr_written ? pack_size_limit - write_offset : 0; /* no if no delta */ int usable_delta = !entry->delta ? 0 : /* yes if unlimited packfile */ !pack_size_limit ? 1 : /* no if base written to previous pack */ entry->delta->offset == (off_t)-1 ? 0 : /* otherwise double-check written to this * pack, like we do below */ entry->delta->offset ? 1 : 0; if (!pack_to_stdout) crc32_begin(f); obj_type = entry->type; if (no_reuse_object) to_reuse = 0; /* explicit */ else if (!entry->in_pack) to_reuse = 0; /* can't reuse what we don't have */ else if (obj_type == OBJ_REF_DELTA || obj_type == OBJ_OFS_DELTA) /* check_object() decided it for us ... */ to_reuse = usable_delta; /* ... but pack split may override that */ else if (obj_type != entry->in_pack_type) to_reuse = 0; /* pack has delta which is unusable */ else if (entry->delta) to_reuse = 0; /* we want to pack afresh */ else to_reuse = 1; /* we have it in-pack undeltified, * and we do not need to deltify it. */ if (!to_reuse) { z_stream stream; unsigned long maxsize; void *out; if (entry->delta_data && usable_delta) { buf = entry->delta_data; size = entry->delta_size; obj_type = (allow_ofs_delta && entry->delta->offset) ? OBJ_OFS_DELTA : OBJ_REF_DELTA; } else { buf = read_sha1_file(entry->sha1, &type, &size); if (!buf) die("unable to read %s", sha1_to_hex(entry->sha1)); if (size != entry->size) die("object %s size inconsistency (%lu vs %lu)", sha1_to_hex(entry->sha1), size, entry->size); if (usable_delta) { buf = delta_against(buf, size, entry); size = entry->delta_size; obj_type = (allow_ofs_delta && entry->delta->offset) ? OBJ_OFS_DELTA : OBJ_REF_DELTA; } else { /* * recover real object type in case * check_object() wanted to re-use a delta, * but we couldn't since base was in previous split pack */ obj_type = type; } } /* compress the data to store and put compressed length in datalen */ memset(&stream, 0, sizeof(stream)); deflateInit(&stream, pack_compression_level); maxsize = deflateBound(&stream, size); out = xmalloc(maxsize); /* Compress it */ stream.next_in = buf; stream.avail_in = size; stream.next_out = out; stream.avail_out = maxsize; while (deflate(&stream, Z_FINISH) == Z_OK) /* nothing */; deflateEnd(&stream); datalen = stream.total_out; deflateEnd(&stream); /* * The object header is a byte of 'type' followed by zero or * more bytes of length. */ hdrlen = encode_header(obj_type, size, header); if (obj_type == OBJ_OFS_DELTA) { /* * Deltas with relative base contain an additional * encoding of the relative offset for the delta * base from this object's position in the pack. */ off_t ofs = entry->offset - entry->delta->offset; unsigned pos = sizeof(dheader) - 1; dheader[pos] = ofs & 127; while (ofs >>= 7) dheader[--pos] = 128 | (--ofs & 127); if (limit && hdrlen + sizeof(dheader) - pos + datalen + 20 >= limit) { free(out); free(buf); return 0; } sha1write(f, header, hdrlen); sha1write(f, dheader + pos, sizeof(dheader) - pos); hdrlen += sizeof(dheader) - pos; } else if (obj_type == OBJ_REF_DELTA) { /* * Deltas with a base reference contain * an additional 20 bytes for the base sha1. */ if (limit && hdrlen + 20 + datalen + 20 >= limit) { free(out); free(buf); return 0; } sha1write(f, header, hdrlen); sha1write(f, entry->delta->sha1, 20); hdrlen += 20; } else { if (limit && hdrlen + datalen + 20 >= limit) { free(out); free(buf); return 0; } sha1write(f, header, hdrlen); } sha1write(f, out, datalen); free(out); free(buf); } else { struct packed_git *p = entry->in_pack; struct pack_window *w_curs = NULL; struct revindex_entry *revidx; off_t offset; if (entry->delta) { obj_type = (allow_ofs_delta && entry->delta->offset) ? OBJ_OFS_DELTA : OBJ_REF_DELTA; reused_delta++; } hdrlen = encode_header(obj_type, entry->size, header); offset = entry->in_pack_offset; revidx = find_packed_object(p, offset); datalen = revidx[1].offset - offset; if (!pack_to_stdout && p->index_version > 1 && check_pack_crc(p, &w_curs, offset, datalen, revidx->nr)) die("bad packed object CRC for %s", sha1_to_hex(entry->sha1)); offset += entry->in_pack_header_size; datalen -= entry->in_pack_header_size; if (obj_type == OBJ_OFS_DELTA) { off_t ofs = entry->offset - entry->delta->offset; unsigned pos = sizeof(dheader) - 1; dheader[pos] = ofs & 127; while (ofs >>= 7) dheader[--pos] = 128 | (--ofs & 127); if (limit && hdrlen + sizeof(dheader) - pos + datalen + 20 >= limit) return 0; sha1write(f, header, hdrlen); sha1write(f, dheader + pos, sizeof(dheader) - pos); hdrlen += sizeof(dheader) - pos; } else if (obj_type == OBJ_REF_DELTA) { if (limit && hdrlen + 20 + datalen + 20 >= limit) return 0; sha1write(f, header, hdrlen); sha1write(f, entry->delta->sha1, 20); hdrlen += 20; } else { if (limit && hdrlen + datalen + 20 >= limit) return 0; sha1write(f, header, hdrlen); } if (!pack_to_stdout && p->index_version == 1 && check_pack_inflate(p, &w_curs, offset, datalen, entry->size)) die("corrupt packed object for %s", sha1_to_hex(entry->sha1)); copy_pack_data(f, p, &w_curs, offset, datalen); unuse_pack(&w_curs); reused++; } if (usable_delta) written_delta++; written++; if (!pack_to_stdout) entry->crc32 = crc32_end(f); return hdrlen + datalen; } static off_t write_one(struct sha1file *f, struct object_entry *e, off_t offset) { unsigned long size; /* offset is non zero if object is written already. */ if (e->offset || e->preferred_base) return offset; /* if we are deltified, write out base object first. */ if (e->delta) { offset = write_one(f, e->delta, offset); if (!offset) return 0; } e->offset = offset; size = write_object(f, e, offset); if (!size) { e->offset = 0; return 0; } written_list[nr_written++] = e; /* make sure off_t is sufficiently large not to wrap */ if (offset > offset + size) die("pack too large for current definition of off_t"); return offset + size; } static int open_object_dir_tmp(const char *path) { snprintf(tmpname, sizeof(tmpname), "%s/%s", get_object_directory(), path); return mkstemp(tmpname); } /* forward declarations for write_pack_file */ static void write_index_file(off_t last_obj_offset, unsigned char *sha1); static int adjust_perm(const char *path, mode_t mode); static void write_pack_file(void) { uint32_t i = 0, j; struct sha1file *f; off_t offset, offset_one, last_obj_offset = 0; struct pack_header hdr; int do_progress = progress >> pack_to_stdout; uint32_t nr_remaining = nr_result; if (do_progress) start_progress(&progress_state, "Writing %u objects...", "", nr_result); written_list = xmalloc(nr_objects * sizeof(struct object_entry *)); do { if (pack_to_stdout) { f = sha1fd(1, ""); } else { int fd = open_object_dir_tmp("tmp_pack_XXXXXX"); if (fd < 0) die("unable to create %s: %s\n", tmpname, strerror(errno)); pack_tmp_name = xstrdup(tmpname); f = sha1fd(fd, pack_tmp_name); } hdr.hdr_signature = htonl(PACK_SIGNATURE); hdr.hdr_version = htonl(PACK_VERSION); hdr.hdr_entries = htonl(nr_remaining); sha1write(f, &hdr, sizeof(hdr)); offset = sizeof(hdr); nr_written = 0; for (; i < nr_objects; i++) { last_obj_offset = offset; offset_one = write_one(f, objects + i, offset); if (!offset_one) break; offset = offset_one; if (do_progress) display_progress(&progress_state, written); } /* * Did we write the wrong # entries in the header? * If so, rewrite it like in fast-import */ if (pack_to_stdout || nr_written == nr_remaining) { sha1close(f, pack_file_sha1, 1); } else { sha1close(f, pack_file_sha1, 0); fixup_pack_header_footer(f->fd, pack_file_sha1, pack_tmp_name, nr_written); close(f->fd); } if (!pack_to_stdout) { unsigned char object_list_sha1[20]; mode_t mode = umask(0); umask(mode); mode = 0444 & ~mode; write_index_file(last_obj_offset, object_list_sha1); snprintf(tmpname, sizeof(tmpname), "%s-%s.pack", base_name, sha1_to_hex(object_list_sha1)); if (adjust_perm(pack_tmp_name, mode)) die("unable to make temporary pack file readable: %s", strerror(errno)); if (rename(pack_tmp_name, tmpname)) die("unable to rename temporary pack file: %s", strerror(errno)); snprintf(tmpname, sizeof(tmpname), "%s-%s.idx", base_name, sha1_to_hex(object_list_sha1)); if (adjust_perm(idx_tmp_name, mode)) die("unable to make temporary index file readable: %s", strerror(errno)); if (rename(idx_tmp_name, tmpname)) die("unable to rename temporary index file: %s", strerror(errno)); puts(sha1_to_hex(object_list_sha1)); } /* mark written objects as written to previous pack */ for (j = 0; j < nr_written; j++) { written_list[j]->offset = (off_t)-1; } nr_remaining -= nr_written; } while (nr_remaining && i < nr_objects); free(written_list); if (do_progress) stop_progress(&progress_state); if (written != nr_result) die("wrote %u objects while expecting %u", written, nr_result); /* * We have scanned through [0 ... i). Since we have written * the correct number of objects, the remaining [i ... nr_objects) * items must be either already written (due to out-of-order delta base) * or a preferred base. Count those which are neither and complain if any. */ for (j = 0; i < nr_objects; i++) { struct object_entry *e = objects + i; j += !e->offset && !e->preferred_base; } if (j) die("wrote %u objects as expected but %u unwritten", written, j); } static int sha1_sort(const void *_a, const void *_b) { const struct object_entry *a = *(struct object_entry **)_a; const struct object_entry *b = *(struct object_entry **)_b; return hashcmp(a->sha1, b->sha1); } static uint32_t index_default_version = 1; static uint32_t index_off32_limit = 0x7fffffff; static void write_index_file(off_t last_obj_offset, unsigned char *sha1) { struct sha1file *f; struct object_entry **sorted_by_sha, **list, **last; uint32_t array[256]; uint32_t i, index_version; SHA_CTX ctx; int fd = open_object_dir_tmp("tmp_idx_XXXXXX"); if (fd < 0) die("unable to create %s: %s\n", tmpname, strerror(errno)); idx_tmp_name = xstrdup(tmpname); f = sha1fd(fd, idx_tmp_name); if (nr_written) { sorted_by_sha = written_list; qsort(sorted_by_sha, nr_written, sizeof(*sorted_by_sha), sha1_sort); list = sorted_by_sha; last = sorted_by_sha + nr_written; } else sorted_by_sha = list = last = NULL; /* if last object's offset is >= 2^31 we should use index V2 */ index_version = (last_obj_offset >> 31) ? 2 : index_default_version; /* index versions 2 and above need a header */ if (index_version >= 2) { struct pack_idx_header hdr; hdr.idx_signature = htonl(PACK_IDX_SIGNATURE); hdr.idx_version = htonl(index_version); sha1write(f, &hdr, sizeof(hdr)); } /* * Write the first-level table (the list is sorted, * but we use a 256-entry lookup to be able to avoid * having to do eight extra binary search iterations). */ for (i = 0; i < 256; i++) { struct object_entry **next = list; while (next < last) { struct object_entry *entry = *next; if (entry->sha1[0] != i) break; next++; } array[i] = htonl(next - sorted_by_sha); list = next; } sha1write(f, array, 256 * 4); /* Compute the SHA1 hash of sorted object names. */ SHA1_Init(&ctx); /* Write the actual SHA1 entries. */ list = sorted_by_sha; for (i = 0; i < nr_written; i++) { struct object_entry *entry = *list++; if (index_version < 2) { uint32_t offset = htonl(entry->offset); sha1write(f, &offset, 4); } sha1write(f, entry->sha1, 20); SHA1_Update(&ctx, entry->sha1, 20); } if (index_version >= 2) { unsigned int nr_large_offset = 0; /* write the crc32 table */ list = sorted_by_sha; for (i = 0; i < nr_written; i++) { struct object_entry *entry = *list++; uint32_t crc32_val = htonl(entry->crc32); sha1write(f, &crc32_val, 4); } /* write the 32-bit offset table */ list = sorted_by_sha; for (i = 0; i < nr_written; i++) { struct object_entry *entry = *list++; uint32_t offset = (entry->offset <= index_off32_limit) ? entry->offset : (0x80000000 | nr_large_offset++); offset = htonl(offset); sha1write(f, &offset, 4); } /* write the large offset table */ list = sorted_by_sha; while (nr_large_offset) { struct object_entry *entry = *list++; uint64_t offset = entry->offset; if (offset > index_off32_limit) { uint32_t split[2]; split[0] = htonl(offset >> 32); split[1] = htonl(offset & 0xffffffff); sha1write(f, split, 8); nr_large_offset--; } } } sha1write(f, pack_file_sha1, 20); sha1close(f, NULL, 1); SHA1_Final(sha1, &ctx); } static int locate_object_entry_hash(const unsigned char *sha1) { int i; unsigned int ui; memcpy(&ui, sha1, sizeof(unsigned int)); i = ui % object_ix_hashsz; while (0 < object_ix[i]) { if (!hashcmp(sha1, objects[object_ix[i] - 1].sha1)) return i; if (++i == object_ix_hashsz) i = 0; } return -1 - i; } static struct object_entry *locate_object_entry(const unsigned char *sha1) { int i; if (!object_ix_hashsz) return NULL; i = locate_object_entry_hash(sha1); if (0 <= i) return &objects[object_ix[i]-1]; return NULL; } static void rehash_objects(void) { uint32_t i; struct object_entry *oe; object_ix_hashsz = nr_objects * 3; if (object_ix_hashsz < 1024) object_ix_hashsz = 1024; object_ix = xrealloc(object_ix, sizeof(int) * object_ix_hashsz); memset(object_ix, 0, sizeof(int) * object_ix_hashsz); for (i = 0, oe = objects; i < nr_objects; i++, oe++) { int ix = locate_object_entry_hash(oe->sha1); if (0 <= ix) continue; ix = -1 - ix; object_ix[ix] = i + 1; } } static unsigned name_hash(const char *name) { unsigned char c; unsigned hash = 0; if (!name) return 0; /* * This effectively just creates a sortable number from the * last sixteen non-whitespace characters. Last characters * count "most", so things that end in ".c" sort together. */ while ((c = *name++) != 0) { if (isspace(c)) continue; hash = (hash >> 2) + (c << 24); } return hash; } static void setup_delta_attr_check(struct git_attr_check *check) { static struct git_attr *attr_delta; if (!attr_delta) attr_delta = git_attr("delta", 5); check[0].attr = attr_delta; } static int no_try_delta(const char *path) { struct git_attr_check check[1]; setup_delta_attr_check(check); if (git_checkattr(path, ARRAY_SIZE(check), check)) return 0; if (ATTR_FALSE(check->value)) return 1; return 0; } static int add_object_entry(const unsigned char *sha1, enum object_type type, const char *name, int exclude) { struct object_entry *entry; struct packed_git *p, *found_pack = NULL; off_t found_offset = 0; int ix; unsigned hash = name_hash(name); ix = nr_objects ? locate_object_entry_hash(sha1) : -1; if (ix >= 0) { if (exclude) { entry = objects + object_ix[ix] - 1; if (!entry->preferred_base) nr_result--; entry->preferred_base = 1; } return 0; } for (p = packed_git; p; p = p->next) { off_t offset = find_pack_entry_one(sha1, p); if (offset) { if (!found_pack) { found_offset = offset; found_pack = p; } if (exclude) break; if (incremental) return 0; if (local && !p->pack_local) return 0; } } if (nr_objects >= nr_alloc) { nr_alloc = (nr_alloc + 1024) * 3 / 2; objects = xrealloc(objects, nr_alloc * sizeof(*entry)); } entry = objects + nr_objects++; memset(entry, 0, sizeof(*entry)); hashcpy(entry->sha1, sha1); entry->hash = hash; if (type) entry->type = type; if (exclude) entry->preferred_base = 1; else nr_result++; if (found_pack) { entry->in_pack = found_pack; entry->in_pack_offset = found_offset; } if (object_ix_hashsz * 3 <= nr_objects * 4) rehash_objects(); else object_ix[-1 - ix] = nr_objects; if (progress) display_progress(&progress_state, nr_objects); if (name && no_try_delta(name)) entry->no_try_delta = 1; return 1; } struct pbase_tree_cache { unsigned char sha1[20]; int ref; int temporary; void *tree_data; unsigned long tree_size; }; static struct pbase_tree_cache *(pbase_tree_cache[256]); static int pbase_tree_cache_ix(const unsigned char *sha1) { return sha1[0] % ARRAY_SIZE(pbase_tree_cache); } static int pbase_tree_cache_ix_incr(int ix) { return (ix+1) % ARRAY_SIZE(pbase_tree_cache); } static struct pbase_tree { struct pbase_tree *next; /* This is a phony "cache" entry; we are not * going to evict it nor find it through _get() * mechanism -- this is for the toplevel node that * would almost always change with any commit. */ struct pbase_tree_cache pcache; } *pbase_tree; static struct pbase_tree_cache *pbase_tree_get(const unsigned char *sha1) { struct pbase_tree_cache *ent, *nent; void *data; unsigned long size; enum object_type type; int neigh; int my_ix = pbase_tree_cache_ix(sha1); int available_ix = -1; /* pbase-tree-cache acts as a limited hashtable. * your object will be found at your index or within a few * slots after that slot if it is cached. */ for (neigh = 0; neigh < 8; neigh++) { ent = pbase_tree_cache[my_ix]; if (ent && !hashcmp(ent->sha1, sha1)) { ent->ref++; return ent; } else if (((available_ix < 0) && (!ent || !ent->ref)) || ((0 <= available_ix) && (!ent && pbase_tree_cache[available_ix]))) available_ix = my_ix; if (!ent) break; my_ix = pbase_tree_cache_ix_incr(my_ix); } /* Did not find one. Either we got a bogus request or * we need to read and perhaps cache. */ data = read_sha1_file(sha1, &type, &size); if (!data) return NULL; if (type != OBJ_TREE) { free(data); return NULL; } /* We need to either cache or return a throwaway copy */ if (available_ix < 0) ent = NULL; else { ent = pbase_tree_cache[available_ix]; my_ix = available_ix; } if (!ent) { nent = xmalloc(sizeof(*nent)); nent->temporary = (available_ix < 0); } else { /* evict and reuse */ free(ent->tree_data); nent = ent; } hashcpy(nent->sha1, sha1); nent->tree_data = data; nent->tree_size = size; nent->ref = 1; if (!nent->temporary) pbase_tree_cache[my_ix] = nent; return nent; } static void pbase_tree_put(struct pbase_tree_cache *cache) { if (!cache->temporary) { cache->ref--; return; } free(cache->tree_data); free(cache); } static int name_cmp_len(const char *name) { int i; for (i = 0; name[i] && name[i] != '\n' && name[i] != '/'; i++) ; return i; } static void add_pbase_object(struct tree_desc *tree, const char *name, int cmplen, const char *fullname) { struct name_entry entry; int cmp; while (tree_entry(tree,&entry)) { cmp = tree_entry_len(entry.path, entry.sha1) != cmplen ? 1 : memcmp(name, entry.path, cmplen); if (cmp > 0) continue; if (cmp < 0) return; if (name[cmplen] != '/') { add_object_entry(entry.sha1, S_ISDIR(entry.mode) ? OBJ_TREE : OBJ_BLOB, fullname, 1); return; } if (S_ISDIR(entry.mode)) { struct tree_desc sub; struct pbase_tree_cache *tree; const char *down = name+cmplen+1; int downlen = name_cmp_len(down); tree = pbase_tree_get(entry.sha1); if (!tree) return; init_tree_desc(&sub, tree->tree_data, tree->tree_size); add_pbase_object(&sub, down, downlen, fullname); pbase_tree_put(tree); } } } static unsigned *done_pbase_paths; static int done_pbase_paths_num; static int done_pbase_paths_alloc; static int done_pbase_path_pos(unsigned hash) { int lo = 0; int hi = done_pbase_paths_num; while (lo < hi) { int mi = (hi + lo) / 2; if (done_pbase_paths[mi] == hash) return mi; if (done_pbase_paths[mi] < hash) hi = mi; else lo = mi + 1; } return -lo-1; } static int check_pbase_path(unsigned hash) { int pos = (!done_pbase_paths) ? -1 : done_pbase_path_pos(hash); if (0 <= pos) return 1; pos = -pos - 1; if (done_pbase_paths_alloc <= done_pbase_paths_num) { done_pbase_paths_alloc = alloc_nr(done_pbase_paths_alloc); done_pbase_paths = xrealloc(done_pbase_paths, done_pbase_paths_alloc * sizeof(unsigned)); } done_pbase_paths_num++; if (pos < done_pbase_paths_num) memmove(done_pbase_paths + pos + 1, done_pbase_paths + pos, (done_pbase_paths_num - pos - 1) * sizeof(unsigned)); done_pbase_paths[pos] = hash; return 0; } static void add_preferred_base_object(const char *name) { struct pbase_tree *it; int cmplen; unsigned hash = name_hash(name); if (!num_preferred_base || check_pbase_path(hash)) return; cmplen = name_cmp_len(name); for (it = pbase_tree; it; it = it->next) { if (cmplen == 0) { add_object_entry(it->pcache.sha1, OBJ_TREE, NULL, 1); } else { struct tree_desc tree; init_tree_desc(&tree, it->pcache.tree_data, it->pcache.tree_size); add_pbase_object(&tree, name, cmplen, name); } } } static void add_preferred_base(unsigned char *sha1) { struct pbase_tree *it; void *data; unsigned long size; unsigned char tree_sha1[20]; if (window <= num_preferred_base++) return; data = read_object_with_reference(sha1, tree_type, &size, tree_sha1); if (!data) return; for (it = pbase_tree; it; it = it->next) { if (!hashcmp(it->pcache.sha1, tree_sha1)) { free(data); return; } } it = xcalloc(1, sizeof(*it)); it->next = pbase_tree; pbase_tree = it; hashcpy(it->pcache.sha1, tree_sha1); it->pcache.tree_data = data; it->pcache.tree_size = size; } static void check_object(struct object_entry *entry) { if (entry->in_pack) { struct packed_git *p = entry->in_pack; struct pack_window *w_curs = NULL; const unsigned char *base_ref = NULL; struct object_entry *base_entry; unsigned long used, used_0; unsigned int avail; off_t ofs; unsigned char *buf, c; buf = use_pack(p, &w_curs, entry->in_pack_offset, &avail); /* * We want in_pack_type even if we do not reuse delta * since non-delta representations could still be reused. */ used = unpack_object_header_gently(buf, avail, &entry->in_pack_type, &entry->size); /* * Determine if this is a delta and if so whether we can * reuse it or not. Otherwise let's find out as cheaply as * possible what the actual type and size for this object is. */ switch (entry->in_pack_type) { default: /* Not a delta hence we've already got all we need. */ entry->type = entry->in_pack_type; entry->in_pack_header_size = used; unuse_pack(&w_curs); return; case OBJ_REF_DELTA: if (!no_reuse_delta && !entry->preferred_base) base_ref = use_pack(p, &w_curs, entry->in_pack_offset + used, NULL); entry->in_pack_header_size = used + 20; break; case OBJ_OFS_DELTA: buf = use_pack(p, &w_curs, entry->in_pack_offset + used, NULL); used_0 = 0; c = buf[used_0++]; ofs = c & 127; while (c & 128) { ofs += 1; if (!ofs || MSB(ofs, 7)) die("delta base offset overflow in pack for %s", sha1_to_hex(entry->sha1)); c = buf[used_0++]; ofs = (ofs << 7) + (c & 127); } if (ofs >= entry->in_pack_offset) die("delta base offset out of bound for %s", sha1_to_hex(entry->sha1)); ofs = entry->in_pack_offset - ofs; if (!no_reuse_delta && !entry->preferred_base) base_ref = find_packed_object_name(p, ofs); entry->in_pack_header_size = used + used_0; break; } if (base_ref && (base_entry = locate_object_entry(base_ref))) { /* * If base_ref was set above that means we wish to * reuse delta data, and we even found that base * in the list of objects we want to pack. Goodie! * * Depth value does not matter - find_deltas() will * never consider reused delta as the base object to * deltify other objects against, in order to avoid * circular deltas. */ entry->type = entry->in_pack_type; entry->delta = base_entry; entry->delta_sibling = base_entry->delta_child; base_entry->delta_child = entry; unuse_pack(&w_curs); return; } if (entry->type) { /* * This must be a delta and we already know what the * final object type is. Let's extract the actual * object size from the delta header. */ entry->size = get_size_from_delta(p, &w_curs, entry->in_pack_offset + entry->in_pack_header_size); unuse_pack(&w_curs); return; } /* * No choice but to fall back to the recursive delta walk * with sha1_object_info() to find about the object type * at this point... */ unuse_pack(&w_curs); } entry->type = sha1_object_info(entry->sha1, &entry->size); if (entry->type < 0) die("unable to get type of object %s", sha1_to_hex(entry->sha1)); } static int pack_offset_sort(const void *_a, const void *_b) { const struct object_entry *a = *(struct object_entry **)_a; const struct object_entry *b = *(struct object_entry **)_b; /* avoid filesystem trashing with loose objects */ if (!a->in_pack && !b->in_pack) return hashcmp(a->sha1, b->sha1); if (a->in_pack < b->in_pack) return -1; if (a->in_pack > b->in_pack) return 1; return a->in_pack_offset < b->in_pack_offset ? -1 : (a->in_pack_offset > b->in_pack_offset); } static void get_object_details(void) { uint32_t i; struct object_entry **sorted_by_offset; sorted_by_offset = xcalloc(nr_objects, sizeof(struct object_entry *)); for (i = 0; i < nr_objects; i++) sorted_by_offset[i] = objects + i; qsort(sorted_by_offset, nr_objects, sizeof(*sorted_by_offset), pack_offset_sort); prepare_pack_ix(); for (i = 0; i < nr_objects; i++) check_object(sorted_by_offset[i]); free(sorted_by_offset); } static int type_size_sort(const void *_a, const void *_b) { const struct object_entry *a = *(struct object_entry **)_a; const struct object_entry *b = *(struct object_entry **)_b; if (a->type < b->type) return -1; if (a->type > b->type) return 1; if (a->hash < b->hash) return -1; if (a->hash > b->hash) return 1; if (a->preferred_base < b->preferred_base) return -1; if (a->preferred_base > b->preferred_base) return 1; if (a->size < b->size) return -1; if (a->size > b->size) return 1; return a > b ? -1 : (a < b); /* newest last */ } struct unpacked { struct object_entry *entry; void *data; struct delta_index *index; }; static int delta_cacheable(struct unpacked *trg, struct unpacked *src, unsigned long src_size, unsigned long trg_size, unsigned long delta_size) { if (max_delta_cache_size && delta_cache_size + delta_size > max_delta_cache_size) return 0; /* cache delta, if objects are large enough compared to delta size */ if ((src_size >> 20) + (trg_size >> 21) > (delta_size >> 10)) return 1; return 0; } /* * We search for deltas _backwards_ in a list sorted by type and * by size, so that we see progressively smaller and smaller files. * That's because we prefer deltas to be from the bigger file * to the smaller - deletes are potentially cheaper, but perhaps * more importantly, the bigger file is likely the more recent * one. */ static int try_delta(struct unpacked *trg, struct unpacked *src, unsigned max_depth) { struct object_entry *trg_entry = trg->entry; struct object_entry *src_entry = src->entry; unsigned long trg_size, src_size, delta_size, sizediff, max_size, sz; enum object_type type; void *delta_buf; /* Don't bother doing diffs between different types */ if (trg_entry->type != src_entry->type) return -1; /* We do not compute delta to *create* objects we are not * going to pack. */ if (trg_entry->preferred_base) return -1; /* * We do not bother to try a delta that we discarded * on an earlier try, but only when reusing delta data. */ if (!no_reuse_delta && trg_entry->in_pack && trg_entry->in_pack == src_entry->in_pack && trg_entry->in_pack_type != OBJ_REF_DELTA && trg_entry->in_pack_type != OBJ_OFS_DELTA) return 0; /* Let's not bust the allowed depth. */ if (src_entry->depth >= max_depth) return 0; /* Now some size filtering heuristics. */ trg_size = trg_entry->size; max_size = trg_size/2 - 20; max_size = max_size * (max_depth - src_entry->depth) / max_depth; if (max_size == 0) return 0; if (trg_entry->delta && trg_entry->delta_size <= max_size) max_size = trg_entry->delta_size-1; src_size = src_entry->size; sizediff = src_size < trg_size ? trg_size - src_size : 0; if (sizediff >= max_size) return 0; /* Load data if not already done */ if (!trg->data) { trg->data = read_sha1_file(trg_entry->sha1, &type, &sz); if (sz != trg_size) die("object %s inconsistent object length (%lu vs %lu)", sha1_to_hex(trg_entry->sha1), sz, trg_size); } if (!src->data) { src->data = read_sha1_file(src_entry->sha1, &type, &sz); if (sz != src_size) die("object %s inconsistent object length (%lu vs %lu)", sha1_to_hex(src_entry->sha1), sz, src_size); } if (!src->index) { src->index = create_delta_index(src->data, src_size); if (!src->index) { static int warned = 0; if (!warned++) warning("suboptimal pack - out of memory"); return 0; } } delta_buf = create_delta(src->index, trg->data, trg_size, &delta_size, max_size); if (!delta_buf) return 0; if (trg_entry->delta_data) { delta_cache_size -= trg_entry->delta_size; free(trg_entry->delta_data); } trg_entry->delta_data = 0; trg_entry->delta = src_entry; trg_entry->delta_size = delta_size; trg_entry->depth = src_entry->depth + 1; if (delta_cacheable(src, trg, src_size, trg_size, delta_size)) { trg_entry->delta_data = xrealloc(delta_buf, delta_size); delta_cache_size += trg_entry->delta_size; } else free(delta_buf); return 1; } static unsigned int check_delta_limit(struct object_entry *me, unsigned int n) { struct object_entry *child = me->delta_child; unsigned int m = n; while (child) { unsigned int c = check_delta_limit(child, n + 1); if (m < c) m = c; child = child->delta_sibling; } return m; } static void find_deltas(struct object_entry **list, int window, int depth) { uint32_t i = nr_objects, idx = 0, processed = 0; unsigned int array_size = window * sizeof(struct unpacked); struct unpacked *array; int max_depth; if (!nr_objects) return; array = xmalloc(array_size); memset(array, 0, array_size); if (progress) start_progress(&progress_state, "Deltifying %u objects...", "", nr_result); do { struct object_entry *entry = list[--i]; struct unpacked *n = array + idx; int j; if (!entry->preferred_base) processed++; if (progress) display_progress(&progress_state, processed); if (entry->delta) /* This happens if we decided to reuse existing * delta from a pack. "!no_reuse_delta &&" is implied. */ continue; if (entry->size < 50) continue; if (entry->no_try_delta) continue; free_delta_index(n->index); n->index = NULL; free(n->data); n->data = NULL; n->entry = entry; /* * If the current object is at pack edge, take the depth the * objects that depend on the current object into account * otherwise they would become too deep. */ max_depth = depth; if (entry->delta_child) { max_depth -= check_delta_limit(entry, 0); if (max_depth <= 0) goto next; } j = window; while (--j > 0) { uint32_t other_idx = idx + j; struct unpacked *m; if (other_idx >= window) other_idx -= window; m = array + other_idx; if (!m->entry) break; if (try_delta(n, m, max_depth) < 0) break; } /* if we made n a delta, and if n is already at max * depth, leaving it in the window is pointless. we * should evict it first. */ if (entry->delta && depth <= entry->depth) continue; next: idx++; if (idx >= window) idx = 0; } while (i > 0); if (progress) stop_progress(&progress_state); for (i = 0; i < window; ++i) { free_delta_index(array[i].index); free(array[i].data); } free(array); } static void prepare_pack(int window, int depth) { struct object_entry **delta_list; uint32_t i; get_object_details(); if (!window || !depth) return; delta_list = xmalloc(nr_objects * sizeof(*delta_list)); for (i = 0; i < nr_objects; i++) delta_list[i] = objects + i; qsort(delta_list, nr_objects, sizeof(*delta_list), type_size_sort); find_deltas(delta_list, window+1, depth); free(delta_list); } static int git_pack_config(const char *k, const char *v) { if(!strcmp(k, "pack.window")) { window = git_config_int(k, v); return 0; } if(!strcmp(k, "pack.depth")) { depth = git_config_int(k, v); return 0; } if (!strcmp(k, "pack.compression")) { int level = git_config_int(k, v); if (level == -1) level = Z_DEFAULT_COMPRESSION; else if (level < 0 || level > Z_BEST_COMPRESSION) die("bad pack compression level %d", level); pack_compression_level = level; pack_compression_seen = 1; return 0; } if (!strcmp(k, "pack.deltacachesize")) { max_delta_cache_size = git_config_int(k, v); return 0; } return git_default_config(k, v); } static void read_object_list_from_stdin(void) { char line[40 + 1 + PATH_MAX + 2]; unsigned char sha1[20]; for (;;) { if (!fgets(line, sizeof(line), stdin)) { if (feof(stdin)) break; if (!ferror(stdin)) die("fgets returned NULL, not EOF, not error!"); if (errno != EINTR) die("fgets: %s", strerror(errno)); clearerr(stdin); continue; } if (line[0] == '-') { if (get_sha1_hex(line+1, sha1)) die("expected edge sha1, got garbage:\n %s", line); add_preferred_base(sha1); continue; } if (get_sha1_hex(line, sha1)) die("expected sha1, got garbage:\n %s", line); add_preferred_base_object(line+41); add_object_entry(sha1, 0, line+41, 0); } } static void show_commit(struct commit *commit) { add_object_entry(commit->object.sha1, OBJ_COMMIT, NULL, 0); } static void show_object(struct object_array_entry *p) { add_preferred_base_object(p->name); add_object_entry(p->item->sha1, p->item->type, p->name, 0); } static void show_edge(struct commit *commit) { add_preferred_base(commit->object.sha1); } static void get_object_list(int ac, const char **av) { struct rev_info revs; char line[1000]; int flags = 0; init_revisions(&revs, NULL); save_commit_buffer = 0; track_object_refs = 0; setup_revisions(ac, av, &revs, NULL); while (fgets(line, sizeof(line), stdin) != NULL) { int len = strlen(line); if (line[len - 1] == '\n') line[--len] = 0; if (!len) break; if (*line == '-') { if (!strcmp(line, "--not")) { flags ^= UNINTERESTING; continue; } die("not a rev '%s'", line); } if (handle_revision_arg(line, &revs, flags, 1)) die("bad revision '%s'", line); } prepare_revision_walk(&revs); mark_edges_uninteresting(revs.commits, &revs, show_edge); traverse_commit_list(&revs, show_commit, show_object); } static int adjust_perm(const char *path, mode_t mode) { if (chmod(path, mode)) return -1; return adjust_shared_perm(path); } int cmd_pack_objects(int argc, const char **argv, const char *prefix) { int use_internal_rev_list = 0; int thin = 0; uint32_t i; const char **rp_av; int rp_ac_alloc = 64; int rp_ac; rp_av = xcalloc(rp_ac_alloc, sizeof(*rp_av)); rp_av[0] = "pack-objects"; rp_av[1] = "--objects"; /* --thin will make it --objects-edge */ rp_ac = 2; git_config(git_pack_config); if (!pack_compression_seen && core_compression_seen) pack_compression_level = core_compression_level; progress = isatty(2); for (i = 1; i < argc; i++) { const char *arg = argv[i]; if (*arg != '-') break; if (!strcmp("--non-empty", arg)) { non_empty = 1; continue; } if (!strcmp("--local", arg)) { local = 1; continue; } if (!strcmp("--incremental", arg)) { incremental = 1; continue; } if (!prefixcmp(arg, "--compression=")) { char *end; int level = strtoul(arg+14, &end, 0); if (!arg[14] || *end) usage(pack_usage); if (level == -1) level = Z_DEFAULT_COMPRESSION; else if (level < 0 || level > Z_BEST_COMPRESSION) die("bad pack compression level %d", level); pack_compression_level = level; continue; } if (!prefixcmp(arg, "--max-pack-size=")) { char *end; pack_size_limit = strtoul(arg+16, &end, 0) * 1024 * 1024; if (!arg[16] || *end) usage(pack_usage); continue; } if (!prefixcmp(arg, "--window=")) { char *end; window = strtoul(arg+9, &end, 0); if (!arg[9] || *end) usage(pack_usage); continue; } if (!prefixcmp(arg, "--depth=")) { char *end; depth = strtoul(arg+8, &end, 0); if (!arg[8] || *end) usage(pack_usage); continue; } if (!strcmp("--progress", arg)) { progress = 1; continue; } if (!strcmp("--all-progress", arg)) { progress = 2; continue; } if (!strcmp("-q", arg)) { progress = 0; continue; } if (!strcmp("--no-reuse-delta", arg)) { no_reuse_delta = 1; continue; } if (!strcmp("--no-reuse-object", arg)) { no_reuse_object = no_reuse_delta = 1; continue; } if (!strcmp("--delta-base-offset", arg)) { allow_ofs_delta = 1; continue; } if (!strcmp("--stdout", arg)) { pack_to_stdout = 1; continue; } if (!strcmp("--revs", arg)) { use_internal_rev_list = 1; continue; } if (!strcmp("--unpacked", arg) || !prefixcmp(arg, "--unpacked=") || !strcmp("--reflog", arg) || !strcmp("--all", arg)) { use_internal_rev_list = 1; if (rp_ac >= rp_ac_alloc - 1) { rp_ac_alloc = alloc_nr(rp_ac_alloc); rp_av = xrealloc(rp_av, rp_ac_alloc * sizeof(*rp_av)); } rp_av[rp_ac++] = arg; continue; } if (!strcmp("--thin", arg)) { use_internal_rev_list = 1; thin = 1; rp_av[1] = "--objects-edge"; continue; } if (!prefixcmp(arg, "--index-version=")) { char *c; index_default_version = strtoul(arg + 16, &c, 10); if (index_default_version > 2) die("bad %s", arg); if (*c == ',') index_off32_limit = strtoul(c+1, &c, 0); if (*c || index_off32_limit & 0x80000000) die("bad %s", arg); continue; } usage(pack_usage); } /* Traditionally "pack-objects [options] base extra" failed; * we would however want to take refs parameter that would * have been given to upstream rev-list ourselves, which means * we somehow want to say what the base name is. So the * syntax would be: * * pack-objects [options] base * * in other words, we would treat the first non-option as the * base_name and send everything else to the internal revision * walker. */ if (!pack_to_stdout) base_name = argv[i++]; if (pack_to_stdout != !base_name) usage(pack_usage); if (pack_to_stdout && pack_size_limit) die("--max-pack-size cannot be used to build a pack for transfer."); if (!pack_to_stdout && thin) die("--thin cannot be used to build an indexable pack."); prepare_packed_git(); if (progress) start_progress(&progress_state, "Generating pack...", "Counting objects: ", 0); if (!use_internal_rev_list) read_object_list_from_stdin(); else { rp_av[rp_ac] = NULL; get_object_list(rp_ac, rp_av); } if (progress) { stop_progress(&progress_state); fprintf(stderr, "Done counting %u objects.\n", nr_objects); } if (non_empty && !nr_result) return 0; if (progress && (nr_objects != nr_result)) fprintf(stderr, "Result has %u objects.\n", nr_result); if (nr_result) prepare_pack(window, depth); write_pack_file(); if (progress) fprintf(stderr, "Total %u (delta %u), reused %u (delta %u)\n", written, written_delta, reused, reused_delta); return 0; }