aboutsummaryrefslogtreecommitdiff
path: root/hashmap.c
blob: b10b642229ca0c3e6eb27142f080921dd5c3aece (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
/*
 * Generic implementation of hash-based key value mappings.
 */
#include "cache.h"
#include "hashmap.h"

#define FNV32_BASE ((unsigned int) 0x811c9dc5)
#define FNV32_PRIME ((unsigned int) 0x01000193)

unsigned int strhash(const char *str)
{
	unsigned int c, hash = FNV32_BASE;
	while ((c = (unsigned char) *str++))
		hash = (hash * FNV32_PRIME) ^ c;
	return hash;
}

unsigned int strihash(const char *str)
{
	unsigned int c, hash = FNV32_BASE;
	while ((c = (unsigned char) *str++)) {
		if (c >= 'a' && c <= 'z')
			c -= 'a' - 'A';
		hash = (hash * FNV32_PRIME) ^ c;
	}
	return hash;
}

unsigned int memhash(const void *buf, size_t len)
{
	unsigned int hash = FNV32_BASE;
	unsigned char *ucbuf = (unsigned char *) buf;
	while (len--) {
		unsigned int c = *ucbuf++;
		hash = (hash * FNV32_PRIME) ^ c;
	}
	return hash;
}

unsigned int memihash(const void *buf, size_t len)
{
	unsigned int hash = FNV32_BASE;
	unsigned char *ucbuf = (unsigned char *) buf;
	while (len--) {
		unsigned int c = *ucbuf++;
		if (c >= 'a' && c <= 'z')
			c -= 'a' - 'A';
		hash = (hash * FNV32_PRIME) ^ c;
	}
	return hash;
}

#define HASHMAP_INITIAL_SIZE 64
/* grow / shrink by 2^2 */
#define HASHMAP_RESIZE_BITS 2
/* load factor in percent */
#define HASHMAP_LOAD_FACTOR 80

static void alloc_table(struct hashmap *map, unsigned int size)
{
	map->tablesize = size;
	map->table = xcalloc(size, sizeof(struct hashmap_entry *));

	/* calculate resize thresholds for new size */
	map->grow_at = (unsigned int) ((uint64_t) size * HASHMAP_LOAD_FACTOR / 100);
	if (size <= HASHMAP_INITIAL_SIZE)
		map->shrink_at = 0;
	else
		/*
		 * The shrink-threshold must be slightly smaller than
		 * (grow-threshold / resize-factor) to prevent erratic resizing,
		 * thus we divide by (resize-factor + 1).
		 */
		map->shrink_at = map->grow_at / ((1 << HASHMAP_RESIZE_BITS) + 1);
}

static inline int entry_equals(const struct hashmap *map,
		const struct hashmap_entry *e1, const struct hashmap_entry *e2,
		const void *keydata)
{
	return (e1 == e2) || (e1->hash == e2->hash && !map->cmpfn(e1, e2, keydata));
}

static inline unsigned int bucket(const struct hashmap *map,
		const struct hashmap_entry *key)
{
	return key->hash & (map->tablesize - 1);
}

static void rehash(struct hashmap *map, unsigned int newsize)
{
	unsigned int i, oldsize = map->tablesize;
	struct hashmap_entry **oldtable = map->table;

	alloc_table(map, newsize);
	for (i = 0; i < oldsize; i++) {
		struct hashmap_entry *e = oldtable[i];
		while (e) {
			struct hashmap_entry *next = e->next;
			unsigned int b = bucket(map, e);
			e->next = map->table[b];
			map->table[b] = e;
			e = next;
		}
	}
	free(oldtable);
}

static inline struct hashmap_entry **find_entry_ptr(const struct hashmap *map,
		const struct hashmap_entry *key, const void *keydata)
{
	struct hashmap_entry **e = &map->table[bucket(map, key)];
	while (*e && !entry_equals(map, *e, key, keydata))
		e = &(*e)->next;
	return e;
}

static int always_equal(const void *unused1, const void *unused2, const void *unused3)
{
	return 0;
}

void hashmap_init(struct hashmap *map, hashmap_cmp_fn equals_function,
		size_t initial_size)
{
	unsigned int size = HASHMAP_INITIAL_SIZE;
	map->size = 0;
	map->cmpfn = equals_function ? equals_function : always_equal;

	/* calculate initial table size and allocate the table */
	initial_size = (unsigned int) ((uint64_t) initial_size * 100
			/ HASHMAP_LOAD_FACTOR);
	while (initial_size > size)
		size <<= HASHMAP_RESIZE_BITS;
	alloc_table(map, size);
}

void hashmap_free(struct hashmap *map, int free_entries)
{
	if (!map || !map->table)
		return;
	if (free_entries) {
		struct hashmap_iter iter;
		struct hashmap_entry *e;
		hashmap_iter_init(map, &iter);
		while ((e = hashmap_iter_next(&iter)))
			free(e);
	}
	free(map->table);
	memset(map, 0, sizeof(*map));
}

void *hashmap_get(const struct hashmap *map, const void *key, const void *keydata)
{
	return *find_entry_ptr(map, key, keydata);
}

void *hashmap_get_next(const struct hashmap *map, const void *entry)
{
	struct hashmap_entry *e = ((struct hashmap_entry *) entry)->next;
	for (; e; e = e->next)
		if (entry_equals(map, entry, e, NULL))
			return e;
	return NULL;
}

void hashmap_add(struct hashmap *map, void *entry)
{
	unsigned int b = bucket(map, entry);

	/* add entry */
	((struct hashmap_entry *) entry)->next = map->table[b];
	map->table[b] = entry;

	/* fix size and rehash if appropriate */
	map->size++;
	if (map->size > map->grow_at)
		rehash(map, map->tablesize << HASHMAP_RESIZE_BITS);
}

void *hashmap_remove(struct hashmap *map, const void *key, const void *keydata)
{
	struct hashmap_entry *old;
	struct hashmap_entry **e = find_entry_ptr(map, key, keydata);
	if (!*e)
		return NULL;

	/* remove existing entry */
	old = *e;
	*e = old->next;
	old->next = NULL;

	/* fix size and rehash if appropriate */
	map->size--;
	if (map->size < map->shrink_at)
		rehash(map, map->tablesize >> HASHMAP_RESIZE_BITS);
	return old;
}

void *hashmap_put(struct hashmap *map, void *entry)
{
	struct hashmap_entry *old = hashmap_remove(map, entry, NULL);
	hashmap_add(map, entry);
	return old;
}

void hashmap_iter_init(struct hashmap *map, struct hashmap_iter *iter)
{
	iter->map = map;
	iter->tablepos = 0;
	iter->next = NULL;
}

void *hashmap_iter_next(struct hashmap_iter *iter)
{
	struct hashmap_entry *current = iter->next;
	for (;;) {
		if (current) {
			iter->next = current->next;
			return current;
		}

		if (iter->tablepos >= iter->map->tablesize)
			return NULL;

		current = iter->map->table[iter->tablepos++];
	}
}

struct pool_entry {
	struct hashmap_entry ent;
	size_t len;
	unsigned char data[FLEX_ARRAY];
};

static int pool_entry_cmp(const struct pool_entry *e1,
			  const struct pool_entry *e2,
			  const unsigned char *keydata)
{
	return e1->data != keydata &&
	       (e1->len != e2->len || memcmp(e1->data, keydata, e1->len));
}

const void *memintern(const void *data, size_t len)
{
	static struct hashmap map;
	struct pool_entry key, *e;

	/* initialize string pool hashmap */
	if (!map.tablesize)
		hashmap_init(&map, (hashmap_cmp_fn) pool_entry_cmp, 0);

	/* lookup interned string in pool */
	hashmap_entry_init(&key, memhash(data, len));
	key.len = len;
	e = hashmap_get(&map, &key, data);
	if (!e) {
		/* not found: create it */
		FLEX_ALLOC_MEM(e, data, data, len);
		hashmap_entry_init(e, key.ent.hash);
		e->len = len;
		hashmap_add(&map, e);
	}
	return e->data;
}