LIRC Device Interface
Introduction
The LIRC device interface is a bi-directional interface for
transporting raw IR data between userspace and kernelspace. Fundamentally,
it is just a chardev (/dev/lircX, for X = 0, 1, 2, ...), with a number
of standard struct file_operations defined on it. With respect to
transporting raw IR data to and fro, the essential fops are read, write
and ioctl.
Example dmesg output upon a driver registering w/LIRC:
$ dmesg |grep lirc_dev
lirc_dev: IR Remote Control driver registered, major 248
rc rc0: lirc_dev: driver ir-lirc-codec (mceusb) registered at minor = 0
What you should see for a chardev:
$ ls -l /dev/lirc*
crw-rw---- 1 root root 248, 0 Jul 2 22:20 /dev/lirc0
LIRC read fop
The lircd userspace daemon reads raw IR data from the LIRC chardev. The
exact format of the data depends on what modes a driver supports, and what
mode has been selected. lircd obtains supported modes and sets the active mode
via the ioctl interface, detailed at . The generally
preferred mode is LIRC_MODE_MODE2, in which packets containing an int value
describing an IR signal are read from the chardev.
See also http://www.lirc.org/html/technical.html for more info.
LIRC write fop
The data written to the chardev is a pulse/space sequence of integer
values. Pulses and spaces are only marked implicitly by their position. The
data must start and end with a pulse, therefore, the data must always include
an unevent number of samples. The write function must block until the data has
been transmitted by the hardware.
LIRC ioctl fop
The LIRC device's ioctl definition is bound by the ioctl function
definition of struct file_operations, leaving us with an unsigned int
for the ioctl command and an unsigned long for the arg. For the purposes
of ioctl portability across 32-bit and 64-bit, these values are capped
to their 32-bit sizes.
The following ioctls can be used to change specific hardware settings.
In general each driver should have a default set of settings. The driver
implementation is expected to re-apply the default settings when the device
is closed by user-space, so that every application opening the device can rely
on working with the default settings initially.
LIRC_GET_FEATURES
Obviously, get the underlying hardware device's features. If a driver
does not announce support of certain features, calling of the corresponding
ioctls is undefined.
LIRC_GET_SEND_MODE
Get supported transmit mode. Only LIRC_MODE_PULSE is supported by lircd.
LIRC_GET_REC_MODE
Get supported receive modes. Only LIRC_MODE_MODE2 and LIRC_MODE_LIRCCODE
are supported by lircd.
LIRC_GET_SEND_CARRIER
Get carrier frequency (in Hz) currently used for transmit.
LIRC_GET_REC_CARRIER
Get carrier frequency (in Hz) currently used for IR reception.
LIRC_{G,S}ET_{SEND,REC}_DUTY_CYCLE
Get/set the duty cycle (from 0 to 100) of the carrier signal. Currently,
no special meaning is defined for 0 or 100, but this could be used to switch
off carrier generation in the future, so these values should be reserved.
LIRC_GET_REC_RESOLUTION
Some receiver have maximum resolution which is defined by internal
sample rate or data format limitations. E.g. it's common that signals can
only be reported in 50 microsecond steps. This integer value is used by
lircd to automatically adjust the aeps tolerance value in the lircd
config file.
LIRC_GET_M{IN,AX}_TIMEOUT
Some devices have internal timers that can be used to detect when
there's no IR activity for a long time. This can help lircd in detecting
that a IR signal is finished and can speed up the decoding process.
Returns an integer value with the minimum/maximum timeout that can be
set. Some devices have a fixed timeout, in that case both ioctls will
return the same value even though the timeout cannot be changed.
LIRC_GET_M{IN,AX}_FILTER_{PULSE,SPACE}
Some devices are able to filter out spikes in the incoming signal
using given filter rules. These ioctls return the hardware capabilities
that describe the bounds of the possible filters. Filter settings depend
on the IR protocols that are expected. lircd derives the settings from
all protocols definitions found in its config file.
LIRC_GET_LENGTH
Retrieves the code length in bits (only for LIRC_MODE_LIRCCODE).
Reads on the device must be done in blocks matching the bit count.
The bit could should be rounded up so that it matches full bytes.
LIRC_SET_{SEND,REC}_MODE
Set send/receive mode. Largely obsolete for send, as only
LIRC_MODE_PULSE is supported.
LIRC_SET_{SEND,REC}_CARRIER
Set send/receive carrier (in Hz).
LIRC_SET_TRANSMITTER_MASK
This enables the given set of transmitters. The first transmitter
is encoded by the least significant bit, etc. When an invalid bit mask
is given, i.e. a bit is set, even though the device does not have so many
transitters, then this ioctl returns the number of available transitters
and does nothing otherwise.
LIRC_SET_REC_TIMEOUT
Sets the integer value for IR inactivity timeout (cf.
LIRC_GET_MIN_TIMEOUT and LIRC_GET_MAX_TIMEOUT). A value of 0 (if
supported by the hardware) disables all hardware timeouts and data should
be reported as soon as possible. If the exact value cannot be set, then
the next possible value _greater_ than the given value should be set.
LIRC_SET_REC_TIMEOUT_REPORTS
Enable (1) or disable (0) timeout reports in LIRC_MODE_MODE2. By
default, timeout reports should be turned off.
LIRC_SET_REC_FILTER_{,PULSE,SPACE}
Pulses/spaces shorter than this are filtered out by hardware. If
filters cannot be set independently for pulse/space, the corresponding
ioctls must return an error and LIRC_SET_REC_FILTER shall be used instead.
LIRC_SET_MEASURE_CARRIER_MODE
Enable (1)/disable (0) measure mode. If enabled, from the next key
press on, the driver will send LIRC_MODE2_FREQUENCY packets. By default
this should be turned off.
LIRC_SET_REC_{DUTY_CYCLE,CARRIER}_RANGE
To set a range use LIRC_SET_REC_DUTY_CYCLE_RANGE/LIRC_SET_REC_CARRIER_RANGE
with the lower bound first and later LIRC_SET_REC_DUTY_CYCLE/LIRC_SET_REC_CARRIER
with the upper bound.
LIRC_NOTIFY_DECODE
This ioctl is called by lircd whenever a successful decoding of an
incoming IR signal could be done. This can be used by supporting hardware
to give visual feedback to the user e.g. by flashing a LED.
LIRC_SETUP_{START,END}
Setting of several driver parameters can be optimized by encapsulating
the according ioctl calls with LIRC_SETUP_START/LIRC_SETUP_END. When a
driver receives a LIRC_SETUP_START ioctl it can choose to not commit
further setting changes to the hardware until a LIRC_SETUP_END is received.
But this is open to the driver implementation and every driver must also
handle parameter changes which are not encapsulated by LIRC_SETUP_START
and LIRC_SETUP_END. Drivers can also choose to ignore these ioctls.
LIRC_SET_WIDEBAND_RECEIVER
Some receivers are equipped with special wide band receiver which is intended
to be used to learn output of existing remote.
Calling that ioctl with (1) will enable it, and with (0) disable it.
This might be useful of receivers that have otherwise narrow band receiver
that prevents them to be used with some remotes.
Wide band receiver might also be more precise
On the other hand its disadvantage it usually reduced range of reception.
Note: wide band receiver might be implictly enabled if you enable
carrier reports. In that case it will be disabled as soon as you disable
carrier reports. Trying to disable wide band receiver while carrier
reports are active will do nothing.