// SPDX-License-Identifier: GPL-2.0 /* Copyright (c) 2018, Intel Corporation. */ #include "ice_switch.h" #define ICE_ETH_DA_OFFSET 0 #define ICE_ETH_ETHTYPE_OFFSET 12 #define ICE_ETH_VLAN_TCI_OFFSET 14 #define ICE_MAX_VLAN_ID 0xFFF /* Dummy ethernet header needed in the ice_aqc_sw_rules_elem * struct to configure any switch filter rules. * {DA (6 bytes), SA(6 bytes), * Ether type (2 bytes for header without VLAN tag) OR * VLAN tag (4 bytes for header with VLAN tag) } * * Word on Hardcoded values * byte 0 = 0x2: to identify it as locally administered DA MAC * byte 6 = 0x2: to identify it as locally administered SA MAC * byte 12 = 0x81 & byte 13 = 0x00: * In case of VLAN filter first two bytes defines ether type (0x8100) * and remaining two bytes are placeholder for programming a given VLAN id * In case of Ether type filter it is treated as header without VLAN tag * and byte 12 and 13 is used to program a given Ether type instead */ #define DUMMY_ETH_HDR_LEN 16 static const u8 dummy_eth_header[DUMMY_ETH_HDR_LEN] = { 0x2, 0, 0, 0, 0, 0, 0x2, 0, 0, 0, 0, 0, 0x81, 0, 0, 0}; #define ICE_SW_RULE_RX_TX_ETH_HDR_SIZE \ (sizeof(struct ice_aqc_sw_rules_elem) - \ sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ sizeof(struct ice_sw_rule_lkup_rx_tx) + DUMMY_ETH_HDR_LEN - 1) #define ICE_SW_RULE_RX_TX_NO_HDR_SIZE \ (sizeof(struct ice_aqc_sw_rules_elem) - \ sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ sizeof(struct ice_sw_rule_lkup_rx_tx) - 1) #define ICE_SW_RULE_LG_ACT_SIZE(n) \ (sizeof(struct ice_aqc_sw_rules_elem) - \ sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ sizeof(struct ice_sw_rule_lg_act) - \ sizeof(((struct ice_sw_rule_lg_act *)0)->act) + \ ((n) * sizeof(((struct ice_sw_rule_lg_act *)0)->act))) #define ICE_SW_RULE_VSI_LIST_SIZE(n) \ (sizeof(struct ice_aqc_sw_rules_elem) - \ sizeof(((struct ice_aqc_sw_rules_elem *)0)->pdata) + \ sizeof(struct ice_sw_rule_vsi_list) - \ sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi) + \ ((n) * sizeof(((struct ice_sw_rule_vsi_list *)0)->vsi))) /** * ice_aq_alloc_free_res - command to allocate/free resources * @hw: pointer to the hw struct * @num_entries: number of resource entries in buffer * @buf: Indirect buffer to hold data parameters and response * @buf_size: size of buffer for indirect commands * @opc: pass in the command opcode * @cd: pointer to command details structure or NULL * * Helper function to allocate/free resources using the admin queue commands */ static enum ice_status ice_aq_alloc_free_res(struct ice_hw *hw, u16 num_entries, struct ice_aqc_alloc_free_res_elem *buf, u16 buf_size, enum ice_adminq_opc opc, struct ice_sq_cd *cd) { struct ice_aqc_alloc_free_res_cmd *cmd; struct ice_aq_desc desc; cmd = &desc.params.sw_res_ctrl; if (!buf) return ICE_ERR_PARAM; if (buf_size < (num_entries * sizeof(buf->elem[0]))) return ICE_ERR_PARAM; ice_fill_dflt_direct_cmd_desc(&desc, opc); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); cmd->num_entries = cpu_to_le16(num_entries); return ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); } /** * ice_aq_get_sw_cfg - get switch configuration * @hw: pointer to the hardware structure * @buf: pointer to the result buffer * @buf_size: length of the buffer available for response * @req_desc: pointer to requested descriptor * @num_elems: pointer to number of elements * @cd: pointer to command details structure or NULL * * Get switch configuration (0x0200) to be placed in 'buff'. * This admin command returns information such as initial VSI/port number * and switch ID it belongs to. * * NOTE: *req_desc is both an input/output parameter. * The caller of this function first calls this function with *request_desc set * to 0. If the response from f/w has *req_desc set to 0, all the switch * configuration information has been returned; if non-zero (meaning not all * the information was returned), the caller should call this function again * with *req_desc set to the previous value returned by f/w to get the * next block of switch configuration information. * * *num_elems is output only parameter. This reflects the number of elements * in response buffer. The caller of this function to use *num_elems while * parsing the response buffer. */ static enum ice_status ice_aq_get_sw_cfg(struct ice_hw *hw, struct ice_aqc_get_sw_cfg_resp *buf, u16 buf_size, u16 *req_desc, u16 *num_elems, struct ice_sq_cd *cd) { struct ice_aqc_get_sw_cfg *cmd; enum ice_status status; struct ice_aq_desc desc; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_get_sw_cfg); cmd = &desc.params.get_sw_conf; cmd->element = cpu_to_le16(*req_desc); status = ice_aq_send_cmd(hw, &desc, buf, buf_size, cd); if (!status) { *req_desc = le16_to_cpu(cmd->element); *num_elems = le16_to_cpu(cmd->num_elems); } return status; } /** * ice_aq_add_vsi * @hw: pointer to the hw struct * @vsi_ctx: pointer to a VSI context struct * @cd: pointer to command details structure or NULL * * Add a VSI context to the hardware (0x0210) */ enum ice_status ice_aq_add_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, struct ice_sq_cd *cd) { struct ice_aqc_add_update_free_vsi_resp *res; struct ice_aqc_add_get_update_free_vsi *cmd; enum ice_status status; struct ice_aq_desc desc; cmd = &desc.params.vsi_cmd; res = (struct ice_aqc_add_update_free_vsi_resp *)&desc.params.raw; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_add_vsi); if (!vsi_ctx->alloc_from_pool) cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); cmd->vsi_flags = cpu_to_le16(vsi_ctx->flags); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, sizeof(vsi_ctx->info), cd); if (!status) { vsi_ctx->vsi_num = le16_to_cpu(res->vsi_num) & ICE_AQ_VSI_NUM_M; vsi_ctx->vsis_allocd = le16_to_cpu(res->vsi_used); vsi_ctx->vsis_unallocated = le16_to_cpu(res->vsi_free); } return status; } /** * ice_aq_update_vsi * @hw: pointer to the hw struct * @vsi_ctx: pointer to a VSI context struct * @cd: pointer to command details structure or NULL * * Update VSI context in the hardware (0x0211) */ enum ice_status ice_aq_update_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, struct ice_sq_cd *cd) { struct ice_aqc_add_update_free_vsi_resp *resp; struct ice_aqc_add_get_update_free_vsi *cmd; struct ice_aq_desc desc; enum ice_status status; cmd = &desc.params.vsi_cmd; resp = (struct ice_aqc_add_update_free_vsi_resp *)&desc.params.raw; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_update_vsi); cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); status = ice_aq_send_cmd(hw, &desc, &vsi_ctx->info, sizeof(vsi_ctx->info), cd); if (!status) { vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); } return status; } /** * ice_aq_free_vsi * @hw: pointer to the hw struct * @vsi_ctx: pointer to a VSI context struct * @keep_vsi_alloc: keep VSI allocation as part of this PF's resources * @cd: pointer to command details structure or NULL * * Get VSI context info from hardware (0x0213) */ enum ice_status ice_aq_free_vsi(struct ice_hw *hw, struct ice_vsi_ctx *vsi_ctx, bool keep_vsi_alloc, struct ice_sq_cd *cd) { struct ice_aqc_add_update_free_vsi_resp *resp; struct ice_aqc_add_get_update_free_vsi *cmd; struct ice_aq_desc desc; enum ice_status status; cmd = &desc.params.vsi_cmd; resp = (struct ice_aqc_add_update_free_vsi_resp *)&desc.params.raw; ice_fill_dflt_direct_cmd_desc(&desc, ice_aqc_opc_free_vsi); cmd->vsi_num = cpu_to_le16(vsi_ctx->vsi_num | ICE_AQ_VSI_IS_VALID); if (keep_vsi_alloc) cmd->cmd_flags = cpu_to_le16(ICE_AQ_VSI_KEEP_ALLOC); status = ice_aq_send_cmd(hw, &desc, NULL, 0, cd); if (!status) { vsi_ctx->vsis_allocd = le16_to_cpu(resp->vsi_used); vsi_ctx->vsis_unallocated = le16_to_cpu(resp->vsi_free); } return status; } /** * ice_aq_alloc_free_vsi_list * @hw: pointer to the hw struct * @vsi_list_id: VSI list id returned or used for lookup * @lkup_type: switch rule filter lookup type * @opc: switch rules population command type - pass in the command opcode * * allocates or free a VSI list resource */ static enum ice_status ice_aq_alloc_free_vsi_list(struct ice_hw *hw, u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type, enum ice_adminq_opc opc) { struct ice_aqc_alloc_free_res_elem *sw_buf; struct ice_aqc_res_elem *vsi_ele; enum ice_status status; u16 buf_len; buf_len = sizeof(*sw_buf); sw_buf = devm_kzalloc(ice_hw_to_dev(hw), buf_len, GFP_KERNEL); if (!sw_buf) return ICE_ERR_NO_MEMORY; sw_buf->num_elems = cpu_to_le16(1); if (lkup_type == ICE_SW_LKUP_MAC || lkup_type == ICE_SW_LKUP_MAC_VLAN || lkup_type == ICE_SW_LKUP_ETHERTYPE || lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || lkup_type == ICE_SW_LKUP_PROMISC || lkup_type == ICE_SW_LKUP_PROMISC_VLAN) { sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_REP); } else if (lkup_type == ICE_SW_LKUP_VLAN) { sw_buf->res_type = cpu_to_le16(ICE_AQC_RES_TYPE_VSI_LIST_PRUNE); } else { status = ICE_ERR_PARAM; goto ice_aq_alloc_free_vsi_list_exit; } if (opc == ice_aqc_opc_free_res) sw_buf->elem[0].e.sw_resp = cpu_to_le16(*vsi_list_id); status = ice_aq_alloc_free_res(hw, 1, sw_buf, buf_len, opc, NULL); if (status) goto ice_aq_alloc_free_vsi_list_exit; if (opc == ice_aqc_opc_alloc_res) { vsi_ele = &sw_buf->elem[0]; *vsi_list_id = le16_to_cpu(vsi_ele->e.sw_resp); } ice_aq_alloc_free_vsi_list_exit: devm_kfree(ice_hw_to_dev(hw), sw_buf); return status; } /** * ice_aq_sw_rules - add/update/remove switch rules * @hw: pointer to the hw struct * @rule_list: pointer to switch rule population list * @rule_list_sz: total size of the rule list in bytes * @num_rules: number of switch rules in the rule_list * @opc: switch rules population command type - pass in the command opcode * @cd: pointer to command details structure or NULL * * Add(0x02a0)/Update(0x02a1)/Remove(0x02a2) switch rules commands to firmware */ static enum ice_status ice_aq_sw_rules(struct ice_hw *hw, void *rule_list, u16 rule_list_sz, u8 num_rules, enum ice_adminq_opc opc, struct ice_sq_cd *cd) { struct ice_aq_desc desc; if (opc != ice_aqc_opc_add_sw_rules && opc != ice_aqc_opc_update_sw_rules && opc != ice_aqc_opc_remove_sw_rules) return ICE_ERR_PARAM; ice_fill_dflt_direct_cmd_desc(&desc, opc); desc.flags |= cpu_to_le16(ICE_AQ_FLAG_RD); desc.params.sw_rules.num_rules_fltr_entry_index = cpu_to_le16(num_rules); return ice_aq_send_cmd(hw, &desc, rule_list, rule_list_sz, cd); } /* ice_init_port_info - Initialize port_info with switch configuration data * @pi: pointer to port_info * @vsi_port_num: VSI number or port number * @type: Type of switch element (port or VSI) * @swid: switch ID of the switch the element is attached to * @pf_vf_num: PF or VF number * @is_vf: true if the element is a VF, false otherwise */ static void ice_init_port_info(struct ice_port_info *pi, u16 vsi_port_num, u8 type, u16 swid, u16 pf_vf_num, bool is_vf) { switch (type) { case ICE_AQC_GET_SW_CONF_RESP_PHYS_PORT: pi->lport = (u8)(vsi_port_num & ICE_LPORT_MASK); pi->sw_id = swid; pi->pf_vf_num = pf_vf_num; pi->is_vf = is_vf; pi->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; pi->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; break; default: ice_debug(pi->hw, ICE_DBG_SW, "incorrect VSI/port type received\n"); break; } } /* ice_get_initial_sw_cfg - Get initial port and default VSI data * @hw: pointer to the hardware structure */ enum ice_status ice_get_initial_sw_cfg(struct ice_hw *hw) { struct ice_aqc_get_sw_cfg_resp *rbuf; enum ice_status status; u16 req_desc = 0; u16 num_elems; u16 i; rbuf = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_CFG_MAX_BUF_LEN, GFP_KERNEL); if (!rbuf) return ICE_ERR_NO_MEMORY; /* Multiple calls to ice_aq_get_sw_cfg may be required * to get all the switch configuration information. The need * for additional calls is indicated by ice_aq_get_sw_cfg * writing a non-zero value in req_desc */ do { status = ice_aq_get_sw_cfg(hw, rbuf, ICE_SW_CFG_MAX_BUF_LEN, &req_desc, &num_elems, NULL); if (status) break; for (i = 0; i < num_elems; i++) { struct ice_aqc_get_sw_cfg_resp_elem *ele; u16 pf_vf_num, swid, vsi_port_num; bool is_vf = false; u8 type; ele = rbuf[i].elements; vsi_port_num = le16_to_cpu(ele->vsi_port_num) & ICE_AQC_GET_SW_CONF_RESP_VSI_PORT_NUM_M; pf_vf_num = le16_to_cpu(ele->pf_vf_num) & ICE_AQC_GET_SW_CONF_RESP_FUNC_NUM_M; swid = le16_to_cpu(ele->swid); if (le16_to_cpu(ele->pf_vf_num) & ICE_AQC_GET_SW_CONF_RESP_IS_VF) is_vf = true; type = le16_to_cpu(ele->vsi_port_num) >> ICE_AQC_GET_SW_CONF_RESP_TYPE_S; if (type == ICE_AQC_GET_SW_CONF_RESP_VSI) { /* FW VSI is not needed. Just continue. */ continue; } ice_init_port_info(hw->port_info, vsi_port_num, type, swid, pf_vf_num, is_vf); } } while (req_desc && !status); devm_kfree(ice_hw_to_dev(hw), (void *)rbuf); return status; } /** * ice_fill_sw_info - Helper function to populate lb_en and lan_en * @hw: pointer to the hardware structure * @f_info: filter info structure to fill/update * * This helper function populates the lb_en and lan_en elements of the provided * ice_fltr_info struct using the switch's type and characteristics of the * switch rule being configured. */ static void ice_fill_sw_info(struct ice_hw *hw, struct ice_fltr_info *f_info) { f_info->lb_en = false; f_info->lan_en = false; if ((f_info->flag & ICE_FLTR_TX) && (f_info->fltr_act == ICE_FWD_TO_VSI || f_info->fltr_act == ICE_FWD_TO_VSI_LIST || f_info->fltr_act == ICE_FWD_TO_Q || f_info->fltr_act == ICE_FWD_TO_QGRP)) { f_info->lb_en = true; if (!(hw->evb_veb && f_info->lkup_type == ICE_SW_LKUP_MAC && is_unicast_ether_addr(f_info->l_data.mac.mac_addr))) f_info->lan_en = true; } } /** * ice_fill_sw_rule - Helper function to fill switch rule structure * @hw: pointer to the hardware structure * @f_info: entry containing packet forwarding information * @s_rule: switch rule structure to be filled in based on mac_entry * @opc: switch rules population command type - pass in the command opcode */ static void ice_fill_sw_rule(struct ice_hw *hw, struct ice_fltr_info *f_info, struct ice_aqc_sw_rules_elem *s_rule, enum ice_adminq_opc opc) { u16 vlan_id = ICE_MAX_VLAN_ID + 1; u8 eth_hdr[DUMMY_ETH_HDR_LEN]; void *daddr = NULL; u32 act = 0; __be16 *off; if (opc == ice_aqc_opc_remove_sw_rules) { s_rule->pdata.lkup_tx_rx.act = 0; s_rule->pdata.lkup_tx_rx.index = cpu_to_le16(f_info->fltr_rule_id); s_rule->pdata.lkup_tx_rx.hdr_len = 0; return; } /* initialize the ether header with a dummy header */ memcpy(eth_hdr, dummy_eth_header, sizeof(dummy_eth_header)); ice_fill_sw_info(hw, f_info); switch (f_info->fltr_act) { case ICE_FWD_TO_VSI: act |= (f_info->fwd_id.vsi_id << ICE_SINGLE_ACT_VSI_ID_S) & ICE_SINGLE_ACT_VSI_ID_M; if (f_info->lkup_type != ICE_SW_LKUP_VLAN) act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT; break; case ICE_FWD_TO_VSI_LIST: act |= ICE_SINGLE_ACT_VSI_LIST; act |= (f_info->fwd_id.vsi_list_id << ICE_SINGLE_ACT_VSI_LIST_ID_S) & ICE_SINGLE_ACT_VSI_LIST_ID_M; if (f_info->lkup_type != ICE_SW_LKUP_VLAN) act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_VALID_BIT; break; case ICE_FWD_TO_Q: act |= ICE_SINGLE_ACT_TO_Q; act |= (f_info->fwd_id.q_id << ICE_SINGLE_ACT_Q_INDEX_S) & ICE_SINGLE_ACT_Q_INDEX_M; break; case ICE_FWD_TO_QGRP: act |= ICE_SINGLE_ACT_TO_Q; act |= (f_info->qgrp_size << ICE_SINGLE_ACT_Q_REGION_S) & ICE_SINGLE_ACT_Q_REGION_M; break; case ICE_DROP_PACKET: act |= ICE_SINGLE_ACT_VSI_FORWARDING | ICE_SINGLE_ACT_DROP; break; default: return; } if (f_info->lb_en) act |= ICE_SINGLE_ACT_LB_ENABLE; if (f_info->lan_en) act |= ICE_SINGLE_ACT_LAN_ENABLE; switch (f_info->lkup_type) { case ICE_SW_LKUP_MAC: daddr = f_info->l_data.mac.mac_addr; break; case ICE_SW_LKUP_VLAN: vlan_id = f_info->l_data.vlan.vlan_id; if (f_info->fltr_act == ICE_FWD_TO_VSI || f_info->fltr_act == ICE_FWD_TO_VSI_LIST) { act |= ICE_SINGLE_ACT_PRUNE; act |= ICE_SINGLE_ACT_EGRESS | ICE_SINGLE_ACT_INGRESS; } break; case ICE_SW_LKUP_ETHERTYPE_MAC: daddr = f_info->l_data.ethertype_mac.mac_addr; /* fall-through */ case ICE_SW_LKUP_ETHERTYPE: off = (__be16 *)ð_hdr[ICE_ETH_ETHTYPE_OFFSET]; *off = cpu_to_be16(f_info->l_data.ethertype_mac.ethertype); break; case ICE_SW_LKUP_MAC_VLAN: daddr = f_info->l_data.mac_vlan.mac_addr; vlan_id = f_info->l_data.mac_vlan.vlan_id; break; case ICE_SW_LKUP_PROMISC_VLAN: vlan_id = f_info->l_data.mac_vlan.vlan_id; /* fall-through */ case ICE_SW_LKUP_PROMISC: daddr = f_info->l_data.mac_vlan.mac_addr; break; default: break; } s_rule->type = (f_info->flag & ICE_FLTR_RX) ? cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_RX) : cpu_to_le16(ICE_AQC_SW_RULES_T_LKUP_TX); /* Recipe set depending on lookup type */ s_rule->pdata.lkup_tx_rx.recipe_id = cpu_to_le16(f_info->lkup_type); s_rule->pdata.lkup_tx_rx.src = cpu_to_le16(f_info->src); s_rule->pdata.lkup_tx_rx.act = cpu_to_le32(act); if (daddr) ether_addr_copy(ð_hdr[ICE_ETH_DA_OFFSET], daddr); if (!(vlan_id > ICE_MAX_VLAN_ID)) { off = (__be16 *)ð_hdr[ICE_ETH_VLAN_TCI_OFFSET]; *off = cpu_to_be16(vlan_id); } /* Create the switch rule with the final dummy Ethernet header */ if (opc != ice_aqc_opc_update_sw_rules) s_rule->pdata.lkup_tx_rx.hdr_len = cpu_to_le16(sizeof(eth_hdr)); memcpy(s_rule->pdata.lkup_tx_rx.hdr, eth_hdr, sizeof(eth_hdr)); } /** * ice_add_marker_act * @hw: pointer to the hardware structure * @m_ent: the management entry for which sw marker needs to be added * @sw_marker: sw marker to tag the Rx descriptor with * @l_id: large action resource id * * Create a large action to hold software marker and update the switch rule * entry pointed by m_ent with newly created large action */ static enum ice_status ice_add_marker_act(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_ent, u16 sw_marker, u16 l_id) { struct ice_aqc_sw_rules_elem *lg_act, *rx_tx; /* For software marker we need 3 large actions * 1. FWD action: FWD TO VSI or VSI LIST * 2. GENERIC VALUE action to hold the profile id * 3. GENERIC VALUE action to hold the software marker id */ const u16 num_lg_acts = 3; enum ice_status status; u16 lg_act_size; u16 rules_size; u16 vsi_info; u32 act; if (m_ent->fltr_info.lkup_type != ICE_SW_LKUP_MAC) return ICE_ERR_PARAM; /* Create two back-to-back switch rules and submit them to the HW using * one memory buffer: * 1. Large Action * 2. Look up tx rx */ lg_act_size = (u16)ICE_SW_RULE_LG_ACT_SIZE(num_lg_acts); rules_size = lg_act_size + ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; lg_act = devm_kzalloc(ice_hw_to_dev(hw), rules_size, GFP_KERNEL); if (!lg_act) return ICE_ERR_NO_MEMORY; rx_tx = (struct ice_aqc_sw_rules_elem *)((u8 *)lg_act + lg_act_size); /* Fill in the first switch rule i.e. large action */ lg_act->type = cpu_to_le16(ICE_AQC_SW_RULES_T_LG_ACT); lg_act->pdata.lg_act.index = cpu_to_le16(l_id); lg_act->pdata.lg_act.size = cpu_to_le16(num_lg_acts); /* First action VSI forwarding or VSI list forwarding depending on how * many VSIs */ vsi_info = (m_ent->vsi_count > 1) ? m_ent->fltr_info.fwd_id.vsi_list_id : m_ent->fltr_info.fwd_id.vsi_id; act = ICE_LG_ACT_VSI_FORWARDING | ICE_LG_ACT_VALID_BIT; act |= (vsi_info << ICE_LG_ACT_VSI_LIST_ID_S) & ICE_LG_ACT_VSI_LIST_ID_M; if (m_ent->vsi_count > 1) act |= ICE_LG_ACT_VSI_LIST; lg_act->pdata.lg_act.act[0] = cpu_to_le32(act); /* Second action descriptor type */ act = ICE_LG_ACT_GENERIC; act |= (1 << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; lg_act->pdata.lg_act.act[1] = cpu_to_le32(act); act = (7 << ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_VALUE_M; /* Third action Marker value */ act |= ICE_LG_ACT_GENERIC; act |= (sw_marker << ICE_LG_ACT_GENERIC_VALUE_S) & ICE_LG_ACT_GENERIC_VALUE_M; act |= (0 << ICE_LG_ACT_GENERIC_OFFSET_S) & ICE_LG_ACT_GENERIC_VALUE_M; lg_act->pdata.lg_act.act[2] = cpu_to_le32(act); /* call the fill switch rule to fill the lookup tx rx structure */ ice_fill_sw_rule(hw, &m_ent->fltr_info, rx_tx, ice_aqc_opc_update_sw_rules); /* Update the action to point to the large action id */ rx_tx->pdata.lkup_tx_rx.act = cpu_to_le32(ICE_SINGLE_ACT_PTR | ((l_id << ICE_SINGLE_ACT_PTR_VAL_S) & ICE_SINGLE_ACT_PTR_VAL_M)); /* Use the filter rule id of the previously created rule with single * act. Once the update happens, hardware will treat this as large * action */ rx_tx->pdata.lkup_tx_rx.index = cpu_to_le16(m_ent->fltr_info.fltr_rule_id); status = ice_aq_sw_rules(hw, lg_act, rules_size, 2, ice_aqc_opc_update_sw_rules, NULL); if (!status) { m_ent->lg_act_idx = l_id; m_ent->sw_marker_id = sw_marker; } devm_kfree(ice_hw_to_dev(hw), lg_act); return status; } /** * ice_create_vsi_list_map * @hw: pointer to the hardware structure * @vsi_array: array of VSIs to form a VSI list * @num_vsi: num VSI in the array * @vsi_list_id: VSI list id generated as part of allocate resource * * Helper function to create a new entry of VSI list id to VSI mapping * using the given VSI list id */ static struct ice_vsi_list_map_info * ice_create_vsi_list_map(struct ice_hw *hw, u16 *vsi_array, u16 num_vsi, u16 vsi_list_id) { struct ice_switch_info *sw = hw->switch_info; struct ice_vsi_list_map_info *v_map; int i; v_map = devm_kcalloc(ice_hw_to_dev(hw), 1, sizeof(*v_map), GFP_KERNEL); if (!v_map) return NULL; v_map->vsi_list_id = vsi_list_id; for (i = 0; i < num_vsi; i++) set_bit(vsi_array[i], v_map->vsi_map); list_add(&v_map->list_entry, &sw->vsi_list_map_head); return v_map; } /** * ice_update_vsi_list_rule * @hw: pointer to the hardware structure * @vsi_array: array of VSIs to form a VSI list * @num_vsi: num VSI in the array * @vsi_list_id: VSI list id generated as part of allocate resource * @remove: Boolean value to indicate if this is a remove action * @opc: switch rules population command type - pass in the command opcode * @lkup_type: lookup type of the filter * * Call AQ command to add a new switch rule or update existing switch rule * using the given VSI list id */ static enum ice_status ice_update_vsi_list_rule(struct ice_hw *hw, u16 *vsi_array, u16 num_vsi, u16 vsi_list_id, bool remove, enum ice_adminq_opc opc, enum ice_sw_lkup_type lkup_type) { struct ice_aqc_sw_rules_elem *s_rule; enum ice_status status; u16 s_rule_size; u16 type; int i; if (!num_vsi) return ICE_ERR_PARAM; if (lkup_type == ICE_SW_LKUP_MAC || lkup_type == ICE_SW_LKUP_MAC_VLAN || lkup_type == ICE_SW_LKUP_ETHERTYPE || lkup_type == ICE_SW_LKUP_ETHERTYPE_MAC || lkup_type == ICE_SW_LKUP_PROMISC || lkup_type == ICE_SW_LKUP_PROMISC_VLAN) type = remove ? ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR : ICE_AQC_SW_RULES_T_VSI_LIST_SET; else if (lkup_type == ICE_SW_LKUP_VLAN) type = remove ? ICE_AQC_SW_RULES_T_PRUNE_LIST_CLEAR : ICE_AQC_SW_RULES_T_PRUNE_LIST_SET; else return ICE_ERR_PARAM; s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(num_vsi); s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); if (!s_rule) return ICE_ERR_NO_MEMORY; for (i = 0; i < num_vsi; i++) s_rule->pdata.vsi_list.vsi[i] = cpu_to_le16(vsi_array[i]); s_rule->type = cpu_to_le16(type); s_rule->pdata.vsi_list.number_vsi = cpu_to_le16(num_vsi); s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id); status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opc, NULL); devm_kfree(ice_hw_to_dev(hw), s_rule); return status; } /** * ice_create_vsi_list_rule - Creates and populates a VSI list rule * @hw: pointer to the hw struct * @vsi_array: array of VSIs to form a VSI list * @num_vsi: number of VSIs in the array * @vsi_list_id: stores the ID of the VSI list to be created * @lkup_type: switch rule filter's lookup type */ static enum ice_status ice_create_vsi_list_rule(struct ice_hw *hw, u16 *vsi_array, u16 num_vsi, u16 *vsi_list_id, enum ice_sw_lkup_type lkup_type) { enum ice_status status; int i; for (i = 0; i < num_vsi; i++) if (vsi_array[i] >= ICE_MAX_VSI) return ICE_ERR_OUT_OF_RANGE; status = ice_aq_alloc_free_vsi_list(hw, vsi_list_id, lkup_type, ice_aqc_opc_alloc_res); if (status) return status; /* Update the newly created VSI list to include the specified VSIs */ return ice_update_vsi_list_rule(hw, vsi_array, num_vsi, *vsi_list_id, false, ice_aqc_opc_add_sw_rules, lkup_type); } /** * ice_create_pkt_fwd_rule * @hw: pointer to the hardware structure * @f_entry: entry containing packet forwarding information * * Create switch rule with given filter information and add an entry * to the corresponding filter management list to track this switch rule * and VSI mapping */ static enum ice_status ice_create_pkt_fwd_rule(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) { struct ice_switch_info *sw = hw->switch_info; struct ice_fltr_mgmt_list_entry *fm_entry; struct ice_aqc_sw_rules_elem *s_rule; enum ice_sw_lkup_type l_type; enum ice_status status; s_rule = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); if (!s_rule) return ICE_ERR_NO_MEMORY; fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), GFP_KERNEL); if (!fm_entry) { status = ICE_ERR_NO_MEMORY; goto ice_create_pkt_fwd_rule_exit; } fm_entry->fltr_info = f_entry->fltr_info; /* Initialize all the fields for the management entry */ fm_entry->vsi_count = 1; fm_entry->lg_act_idx = ICE_INVAL_LG_ACT_INDEX; fm_entry->sw_marker_id = ICE_INVAL_SW_MARKER_ID; fm_entry->counter_index = ICE_INVAL_COUNTER_ID; ice_fill_sw_rule(hw, &fm_entry->fltr_info, s_rule, ice_aqc_opc_add_sw_rules); status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, ice_aqc_opc_add_sw_rules, NULL); if (status) { devm_kfree(ice_hw_to_dev(hw), fm_entry); goto ice_create_pkt_fwd_rule_exit; } f_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); fm_entry->fltr_info.fltr_rule_id = le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); /* The book keeping entries will get removed when base driver * calls remove filter AQ command */ l_type = fm_entry->fltr_info.lkup_type; if (l_type == ICE_SW_LKUP_MAC) { mutex_lock(&sw->mac_list_lock); list_add(&fm_entry->list_entry, &sw->mac_list_head); mutex_unlock(&sw->mac_list_lock); } else if (l_type == ICE_SW_LKUP_VLAN) { mutex_lock(&sw->vlan_list_lock); list_add(&fm_entry->list_entry, &sw->vlan_list_head); mutex_unlock(&sw->vlan_list_lock); } else if (l_type == ICE_SW_LKUP_ETHERTYPE || l_type == ICE_SW_LKUP_ETHERTYPE_MAC) { mutex_lock(&sw->eth_m_list_lock); list_add(&fm_entry->list_entry, &sw->eth_m_list_head); mutex_unlock(&sw->eth_m_list_lock); } else if (l_type == ICE_SW_LKUP_PROMISC || l_type == ICE_SW_LKUP_PROMISC_VLAN) { mutex_lock(&sw->promisc_list_lock); list_add(&fm_entry->list_entry, &sw->promisc_list_head); mutex_unlock(&sw->promisc_list_lock); } else if (fm_entry->fltr_info.lkup_type == ICE_SW_LKUP_MAC_VLAN) { mutex_lock(&sw->mac_vlan_list_lock); list_add(&fm_entry->list_entry, &sw->mac_vlan_list_head); mutex_unlock(&sw->mac_vlan_list_lock); } else { status = ICE_ERR_NOT_IMPL; } ice_create_pkt_fwd_rule_exit: devm_kfree(ice_hw_to_dev(hw), s_rule); return status; } /** * ice_update_pkt_fwd_rule * @hw: pointer to the hardware structure * @rule_id: rule of previously created switch rule to update * @vsi_list_id: VSI list id to be updated with * @f_info: ice_fltr_info to pull other information for switch rule * * Call AQ command to update a previously created switch rule with a * VSI list id */ static enum ice_status ice_update_pkt_fwd_rule(struct ice_hw *hw, u16 rule_id, u16 vsi_list_id, struct ice_fltr_info f_info) { struct ice_aqc_sw_rules_elem *s_rule; struct ice_fltr_info tmp_fltr; enum ice_status status; s_rule = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); if (!s_rule) return ICE_ERR_NO_MEMORY; tmp_fltr = f_info; tmp_fltr.fltr_act = ICE_FWD_TO_VSI_LIST; tmp_fltr.fwd_id.vsi_list_id = vsi_list_id; ice_fill_sw_rule(hw, &tmp_fltr, s_rule, ice_aqc_opc_update_sw_rules); s_rule->pdata.lkup_tx_rx.index = cpu_to_le16(rule_id); /* Update switch rule with new rule set to forward VSI list */ status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, ice_aqc_opc_update_sw_rules, NULL); devm_kfree(ice_hw_to_dev(hw), s_rule); return status; } /** * ice_handle_vsi_list_mgmt * @hw: pointer to the hardware structure * @m_entry: pointer to current filter management list entry * @cur_fltr: filter information from the book keeping entry * @new_fltr: filter information with the new VSI to be added * * Call AQ command to add or update previously created VSI list with new VSI. * * Helper function to do book keeping associated with adding filter information * The algorithm to do the booking keeping is described below : * When a VSI needs to subscribe to a given filter( MAC/VLAN/Ethtype etc.) * if only one VSI has been added till now * Allocate a new VSI list and add two VSIs * to this list using switch rule command * Update the previously created switch rule with the * newly created VSI list id * if a VSI list was previously created * Add the new VSI to the previously created VSI list set * using the update switch rule command */ static enum ice_status ice_handle_vsi_list_mgmt(struct ice_hw *hw, struct ice_fltr_mgmt_list_entry *m_entry, struct ice_fltr_info *cur_fltr, struct ice_fltr_info *new_fltr) { enum ice_status status = 0; u16 vsi_list_id = 0; if ((cur_fltr->fltr_act == ICE_FWD_TO_Q || cur_fltr->fltr_act == ICE_FWD_TO_QGRP)) return ICE_ERR_NOT_IMPL; if ((new_fltr->fltr_act == ICE_FWD_TO_Q || new_fltr->fltr_act == ICE_FWD_TO_QGRP) && (cur_fltr->fltr_act == ICE_FWD_TO_VSI || cur_fltr->fltr_act == ICE_FWD_TO_VSI_LIST)) return ICE_ERR_NOT_IMPL; if (m_entry->vsi_count < 2 && !m_entry->vsi_list_info) { /* Only one entry existed in the mapping and it was not already * a part of a VSI list. So, create a VSI list with the old and * new VSIs. */ u16 vsi_id_arr[2]; u16 fltr_rule; /* A rule already exists with the new VSI being added */ if (cur_fltr->fwd_id.vsi_id == new_fltr->fwd_id.vsi_id) return ICE_ERR_ALREADY_EXISTS; vsi_id_arr[0] = cur_fltr->fwd_id.vsi_id; vsi_id_arr[1] = new_fltr->fwd_id.vsi_id; status = ice_create_vsi_list_rule(hw, &vsi_id_arr[0], 2, &vsi_list_id, new_fltr->lkup_type); if (status) return status; fltr_rule = cur_fltr->fltr_rule_id; /* Update the previous switch rule of "MAC forward to VSI" to * "MAC fwd to VSI list" */ status = ice_update_pkt_fwd_rule(hw, fltr_rule, vsi_list_id, *new_fltr); if (status) return status; cur_fltr->fwd_id.vsi_list_id = vsi_list_id; cur_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; m_entry->vsi_list_info = ice_create_vsi_list_map(hw, &vsi_id_arr[0], 2, vsi_list_id); /* If this entry was large action then the large action needs * to be updated to point to FWD to VSI list */ if (m_entry->sw_marker_id != ICE_INVAL_SW_MARKER_ID) status = ice_add_marker_act(hw, m_entry, m_entry->sw_marker_id, m_entry->lg_act_idx); } else { u16 vsi_id = new_fltr->fwd_id.vsi_id; enum ice_adminq_opc opcode; /* A rule already exists with the new VSI being added */ if (test_bit(vsi_id, m_entry->vsi_list_info->vsi_map)) return 0; /* Update the previously created VSI list set with * the new VSI id passed in */ vsi_list_id = cur_fltr->fwd_id.vsi_list_id; opcode = ice_aqc_opc_update_sw_rules; status = ice_update_vsi_list_rule(hw, &vsi_id, 1, vsi_list_id, false, opcode, new_fltr->lkup_type); /* update VSI list mapping info with new VSI id */ if (!status) set_bit(vsi_id, m_entry->vsi_list_info->vsi_map); } if (!status) m_entry->vsi_count++; return status; } /** * ice_find_mac_entry * @hw: pointer to the hardware structure * @mac_addr: MAC address to search for * * Helper function to search for a MAC entry using a given MAC address * Returns pointer to the entry if found. */ static struct ice_fltr_mgmt_list_entry * ice_find_mac_entry(struct ice_hw *hw, u8 *mac_addr) { struct ice_fltr_mgmt_list_entry *m_list_itr, *mac_ret = NULL; struct ice_switch_info *sw = hw->switch_info; mutex_lock(&sw->mac_list_lock); list_for_each_entry(m_list_itr, &sw->mac_list_head, list_entry) { u8 *buf = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; if (ether_addr_equal(buf, mac_addr)) { mac_ret = m_list_itr; break; } } mutex_unlock(&sw->mac_list_lock); return mac_ret; } /** * ice_add_shared_mac - Add one MAC shared filter rule * @hw: pointer to the hardware structure * @f_entry: structure containing MAC forwarding information * * Adds or updates the book keeping list for the MAC addresses */ static enum ice_status ice_add_shared_mac(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) { struct ice_fltr_info *new_fltr, *cur_fltr; struct ice_fltr_mgmt_list_entry *m_entry; new_fltr = &f_entry->fltr_info; m_entry = ice_find_mac_entry(hw, &new_fltr->l_data.mac.mac_addr[0]); if (!m_entry) return ice_create_pkt_fwd_rule(hw, f_entry); cur_fltr = &m_entry->fltr_info; return ice_handle_vsi_list_mgmt(hw, m_entry, cur_fltr, new_fltr); } /** * ice_add_mac - Add a MAC address based filter rule * @hw: pointer to the hardware structure * @m_list: list of MAC addresses and forwarding information * * IMPORTANT: When the ucast_shared flag is set to false and m_list has * multiple unicast addresses, the function assumes that all the * addresses are unique in a given add_mac call. It doesn't * check for duplicates in this case, removing duplicates from a given * list should be taken care of in the caller of this function. */ enum ice_status ice_add_mac(struct ice_hw *hw, struct list_head *m_list) { struct ice_aqc_sw_rules_elem *s_rule, *r_iter; struct ice_fltr_list_entry *m_list_itr; u16 elem_sent, total_elem_left; enum ice_status status = 0; u16 num_unicast = 0; u16 s_rule_size; if (!m_list || !hw) return ICE_ERR_PARAM; list_for_each_entry(m_list_itr, m_list, list_entry) { u8 *add = &m_list_itr->fltr_info.l_data.mac.mac_addr[0]; if (m_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_MAC) return ICE_ERR_PARAM; if (is_zero_ether_addr(add)) return ICE_ERR_PARAM; if (is_unicast_ether_addr(add) && !hw->ucast_shared) { /* Don't overwrite the unicast address */ if (ice_find_mac_entry(hw, add)) return ICE_ERR_ALREADY_EXISTS; num_unicast++; } else if (is_multicast_ether_addr(add) || (is_unicast_ether_addr(add) && hw->ucast_shared)) { status = ice_add_shared_mac(hw, m_list_itr); if (status) { m_list_itr->status = ICE_FLTR_STATUS_FW_FAIL; return status; } m_list_itr->status = ICE_FLTR_STATUS_FW_SUCCESS; } } /* Exit if no suitable entries were found for adding bulk switch rule */ if (!num_unicast) return 0; /* Allocate switch rule buffer for the bulk update for unicast */ s_rule_size = ICE_SW_RULE_RX_TX_ETH_HDR_SIZE; s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size, GFP_KERNEL); if (!s_rule) return ICE_ERR_NO_MEMORY; r_iter = s_rule; list_for_each_entry(m_list_itr, m_list, list_entry) { struct ice_fltr_info *f_info = &m_list_itr->fltr_info; u8 *addr = &f_info->l_data.mac.mac_addr[0]; if (is_unicast_ether_addr(addr)) { ice_fill_sw_rule(hw, &m_list_itr->fltr_info, r_iter, ice_aqc_opc_add_sw_rules); r_iter = (struct ice_aqc_sw_rules_elem *) ((u8 *)r_iter + s_rule_size); } } /* Call AQ bulk switch rule update for all unicast addresses */ r_iter = s_rule; /* Call AQ switch rule in AQ_MAX chunk */ for (total_elem_left = num_unicast; total_elem_left > 0; total_elem_left -= elem_sent) { struct ice_aqc_sw_rules_elem *entry = r_iter; elem_sent = min(total_elem_left, (u16)(ICE_AQ_MAX_BUF_LEN / s_rule_size)); status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size, elem_sent, ice_aqc_opc_add_sw_rules, NULL); if (status) goto ice_add_mac_exit; r_iter = (struct ice_aqc_sw_rules_elem *) ((u8 *)r_iter + (elem_sent * s_rule_size)); } /* Fill up rule id based on the value returned from FW */ r_iter = s_rule; list_for_each_entry(m_list_itr, m_list, list_entry) { struct ice_fltr_info *f_info = &m_list_itr->fltr_info; u8 *addr = &f_info->l_data.mac.mac_addr[0]; struct ice_switch_info *sw = hw->switch_info; struct ice_fltr_mgmt_list_entry *fm_entry; if (is_unicast_ether_addr(addr)) { f_info->fltr_rule_id = le16_to_cpu(r_iter->pdata.lkup_tx_rx.index); f_info->fltr_act = ICE_FWD_TO_VSI; /* Create an entry to track this MAC address */ fm_entry = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*fm_entry), GFP_KERNEL); if (!fm_entry) { status = ICE_ERR_NO_MEMORY; goto ice_add_mac_exit; } fm_entry->fltr_info = *f_info; fm_entry->vsi_count = 1; /* The book keeping entries will get removed when * base driver calls remove filter AQ command */ mutex_lock(&sw->mac_list_lock); list_add(&fm_entry->list_entry, &sw->mac_list_head); mutex_unlock(&sw->mac_list_lock); r_iter = (struct ice_aqc_sw_rules_elem *) ((u8 *)r_iter + s_rule_size); } } ice_add_mac_exit: devm_kfree(ice_hw_to_dev(hw), s_rule); return status; } /** * ice_find_vlan_entry * @hw: pointer to the hardware structure * @vlan_id: VLAN id to search for * * Helper function to search for a VLAN entry using a given VLAN id * Returns pointer to the entry if found. */ static struct ice_fltr_mgmt_list_entry * ice_find_vlan_entry(struct ice_hw *hw, u16 vlan_id) { struct ice_fltr_mgmt_list_entry *vlan_list_itr, *vlan_ret = NULL; struct ice_switch_info *sw = hw->switch_info; mutex_lock(&sw->vlan_list_lock); list_for_each_entry(vlan_list_itr, &sw->vlan_list_head, list_entry) if (vlan_list_itr->fltr_info.l_data.vlan.vlan_id == vlan_id) { vlan_ret = vlan_list_itr; break; } mutex_unlock(&sw->vlan_list_lock); return vlan_ret; } /** * ice_add_vlan_internal - Add one VLAN based filter rule * @hw: pointer to the hardware structure * @f_entry: filter entry containing one VLAN information */ static enum ice_status ice_add_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) { struct ice_fltr_info *new_fltr, *cur_fltr; struct ice_fltr_mgmt_list_entry *v_list_itr; u16 vlan_id; new_fltr = &f_entry->fltr_info; /* VLAN id should only be 12 bits */ if (new_fltr->l_data.vlan.vlan_id > ICE_MAX_VLAN_ID) return ICE_ERR_PARAM; vlan_id = new_fltr->l_data.vlan.vlan_id; v_list_itr = ice_find_vlan_entry(hw, vlan_id); if (!v_list_itr) { u16 vsi_id = ICE_VSI_INVAL_ID; enum ice_status status; u16 vsi_list_id = 0; if (new_fltr->fltr_act == ICE_FWD_TO_VSI) { enum ice_sw_lkup_type lkup_type = new_fltr->lkup_type; /* All VLAN pruning rules use a VSI list. * Convert the action to forwarding to a VSI list. */ vsi_id = new_fltr->fwd_id.vsi_id; status = ice_create_vsi_list_rule(hw, &vsi_id, 1, &vsi_list_id, lkup_type); if (status) return status; new_fltr->fltr_act = ICE_FWD_TO_VSI_LIST; new_fltr->fwd_id.vsi_list_id = vsi_list_id; } status = ice_create_pkt_fwd_rule(hw, f_entry); if (!status && vsi_id != ICE_VSI_INVAL_ID) { v_list_itr = ice_find_vlan_entry(hw, vlan_id); if (!v_list_itr) return ICE_ERR_DOES_NOT_EXIST; v_list_itr->vsi_list_info = ice_create_vsi_list_map(hw, &vsi_id, 1, vsi_list_id); } return status; } cur_fltr = &v_list_itr->fltr_info; return ice_handle_vsi_list_mgmt(hw, v_list_itr, cur_fltr, new_fltr); } /** * ice_add_vlan - Add VLAN based filter rule * @hw: pointer to the hardware structure * @v_list: list of VLAN entries and forwarding information */ enum ice_status ice_add_vlan(struct ice_hw *hw, struct list_head *v_list) { struct ice_fltr_list_entry *v_list_itr; if (!v_list || !hw) return ICE_ERR_PARAM; list_for_each_entry(v_list_itr, v_list, list_entry) { enum ice_status status; if (v_list_itr->fltr_info.lkup_type != ICE_SW_LKUP_VLAN) return ICE_ERR_PARAM; status = ice_add_vlan_internal(hw, v_list_itr); if (status) { v_list_itr->status = ICE_FLTR_STATUS_FW_FAIL; return status; } v_list_itr->status = ICE_FLTR_STATUS_FW_SUCCESS; } return 0; } /** * ice_remove_vsi_list_rule * @hw: pointer to the hardware structure * @vsi_list_id: VSI list id generated as part of allocate resource * @lkup_type: switch rule filter lookup type */ static enum ice_status ice_remove_vsi_list_rule(struct ice_hw *hw, u16 vsi_list_id, enum ice_sw_lkup_type lkup_type) { struct ice_aqc_sw_rules_elem *s_rule; enum ice_status status; u16 s_rule_size; s_rule_size = (u16)ICE_SW_RULE_VSI_LIST_SIZE(0); s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); if (!s_rule) return ICE_ERR_NO_MEMORY; s_rule->type = cpu_to_le16(ICE_AQC_SW_RULES_T_VSI_LIST_CLEAR); s_rule->pdata.vsi_list.index = cpu_to_le16(vsi_list_id); /* FW expects number of VSIs in vsi_list resource to be 0 for clear * command. Since memory is zero'ed out during initialization, it's not * necessary to explicitly initialize the variable to 0. */ status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, ice_aqc_opc_remove_sw_rules, NULL); if (!status) /* Free the vsi_list resource that we allocated */ status = ice_aq_alloc_free_vsi_list(hw, &vsi_list_id, lkup_type, ice_aqc_opc_free_res); devm_kfree(ice_hw_to_dev(hw), s_rule); return status; } /** * ice_handle_rem_vsi_list_mgmt * @hw: pointer to the hardware structure * @vsi_id: ID of the VSI to remove * @fm_list_itr: filter management entry for which the VSI list management * needs to be done */ static enum ice_status ice_handle_rem_vsi_list_mgmt(struct ice_hw *hw, u16 vsi_id, struct ice_fltr_mgmt_list_entry *fm_list_itr) { struct ice_switch_info *sw = hw->switch_info; enum ice_status status = 0; enum ice_sw_lkup_type lkup_type; bool is_last_elem = true; bool conv_list = false; bool del_list = false; u16 vsi_list_id; lkup_type = fm_list_itr->fltr_info.lkup_type; vsi_list_id = fm_list_itr->fltr_info.fwd_id.vsi_list_id; if (fm_list_itr->vsi_count > 1) { status = ice_update_vsi_list_rule(hw, &vsi_id, 1, vsi_list_id, true, ice_aqc_opc_update_sw_rules, lkup_type); if (status) return status; fm_list_itr->vsi_count--; is_last_elem = false; clear_bit(vsi_id, fm_list_itr->vsi_list_info->vsi_map); } /* For non-VLAN rules that forward packets to a VSI list, convert them * to forwarding packets to a VSI if there is only one VSI left in the * list. Unused lists are then removed. * VLAN rules need to use VSI lists even with only one VSI. */ if (fm_list_itr->fltr_info.fltr_act == ICE_FWD_TO_VSI_LIST) { if (lkup_type == ICE_SW_LKUP_VLAN) { del_list = is_last_elem; } else if (fm_list_itr->vsi_count == 1) { conv_list = true; del_list = true; } } if (del_list) { /* Remove the VSI list since it is no longer used */ struct ice_vsi_list_map_info *vsi_list_info = fm_list_itr->vsi_list_info; status = ice_remove_vsi_list_rule(hw, vsi_list_id, lkup_type); if (status) return status; if (conv_list) { u16 rem_vsi_id; rem_vsi_id = find_first_bit(vsi_list_info->vsi_map, ICE_MAX_VSI); /* Error out when the expected last element is not in * the VSI list map */ if (rem_vsi_id == ICE_MAX_VSI) return ICE_ERR_OUT_OF_RANGE; /* Change the list entry action from VSI_LIST to VSI */ fm_list_itr->fltr_info.fltr_act = ICE_FWD_TO_VSI; fm_list_itr->fltr_info.fwd_id.vsi_id = rem_vsi_id; } list_del(&vsi_list_info->list_entry); devm_kfree(ice_hw_to_dev(hw), vsi_list_info); fm_list_itr->vsi_list_info = NULL; } if (conv_list) { /* Convert the rule's forward action to forwarding packets to * a VSI */ struct ice_aqc_sw_rules_elem *s_rule; s_rule = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, GFP_KERNEL); if (!s_rule) return ICE_ERR_NO_MEMORY; ice_fill_sw_rule(hw, &fm_list_itr->fltr_info, s_rule, ice_aqc_opc_update_sw_rules); s_rule->pdata.lkup_tx_rx.index = cpu_to_le16(fm_list_itr->fltr_info.fltr_rule_id); status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_ETH_HDR_SIZE, 1, ice_aqc_opc_update_sw_rules, NULL); devm_kfree(ice_hw_to_dev(hw), s_rule); if (status) return status; } if (is_last_elem) { /* Remove the lookup rule */ struct ice_aqc_sw_rules_elem *s_rule; s_rule = devm_kzalloc(ice_hw_to_dev(hw), ICE_SW_RULE_RX_TX_NO_HDR_SIZE, GFP_KERNEL); if (!s_rule) return ICE_ERR_NO_MEMORY; ice_fill_sw_rule(hw, &fm_list_itr->fltr_info, s_rule, ice_aqc_opc_remove_sw_rules); status = ice_aq_sw_rules(hw, s_rule, ICE_SW_RULE_RX_TX_NO_HDR_SIZE, 1, ice_aqc_opc_remove_sw_rules, NULL); if (status) return status; /* Remove a book keeping entry from the MAC address list */ mutex_lock(&sw->mac_list_lock); list_del(&fm_list_itr->list_entry); mutex_unlock(&sw->mac_list_lock); devm_kfree(ice_hw_to_dev(hw), fm_list_itr); devm_kfree(ice_hw_to_dev(hw), s_rule); } return status; } /** * ice_remove_mac_entry * @hw: pointer to the hardware structure * @f_entry: structure containing MAC forwarding information */ static enum ice_status ice_remove_mac_entry(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) { struct ice_fltr_mgmt_list_entry *m_entry; u16 vsi_id; u8 *add; add = &f_entry->fltr_info.l_data.mac.mac_addr[0]; m_entry = ice_find_mac_entry(hw, add); if (!m_entry) return ICE_ERR_PARAM; vsi_id = f_entry->fltr_info.fwd_id.vsi_id; return ice_handle_rem_vsi_list_mgmt(hw, vsi_id, m_entry); } /** * ice_remove_mac - remove a MAC address based filter rule * @hw: pointer to the hardware structure * @m_list: list of MAC addresses and forwarding information * * This function removes either a MAC filter rule or a specific VSI from a * VSI list for a multicast MAC address. * * Returns ICE_ERR_DOES_NOT_EXIST if a given entry was not added by * ice_add_mac. Caller should be aware that this call will only work if all * the entries passed into m_list were added previously. It will not attempt to * do a partial remove of entries that were found. */ enum ice_status ice_remove_mac(struct ice_hw *hw, struct list_head *m_list) { struct ice_aqc_sw_rules_elem *s_rule, *r_iter; u8 s_rule_size = ICE_SW_RULE_RX_TX_NO_HDR_SIZE; struct ice_switch_info *sw = hw->switch_info; struct ice_fltr_mgmt_list_entry *m_entry; struct ice_fltr_list_entry *m_list_itr; u16 elem_sent, total_elem_left; enum ice_status status = 0; u16 num_unicast = 0; if (!m_list) return ICE_ERR_PARAM; list_for_each_entry(m_list_itr, m_list, list_entry) { u8 *addr = m_list_itr->fltr_info.l_data.mac.mac_addr; if (is_unicast_ether_addr(addr) && !hw->ucast_shared) num_unicast++; else if (is_multicast_ether_addr(addr) || (is_unicast_ether_addr(addr) && hw->ucast_shared)) ice_remove_mac_entry(hw, m_list_itr); } /* Exit if no unicast addresses found. Multicast switch rules * were added individually */ if (!num_unicast) return 0; /* Allocate switch rule buffer for the bulk update for unicast */ s_rule = devm_kcalloc(ice_hw_to_dev(hw), num_unicast, s_rule_size, GFP_KERNEL); if (!s_rule) return ICE_ERR_NO_MEMORY; r_iter = s_rule; list_for_each_entry(m_list_itr, m_list, list_entry) { u8 *addr = m_list_itr->fltr_info.l_data.mac.mac_addr; if (is_unicast_ether_addr(addr)) { m_entry = ice_find_mac_entry(hw, addr); if (!m_entry) { status = ICE_ERR_DOES_NOT_EXIST; goto ice_remove_mac_exit; } ice_fill_sw_rule(hw, &m_entry->fltr_info, r_iter, ice_aqc_opc_remove_sw_rules); r_iter = (struct ice_aqc_sw_rules_elem *) ((u8 *)r_iter + s_rule_size); } } /* Call AQ bulk switch rule update for all unicast addresses */ r_iter = s_rule; /* Call AQ switch rule in AQ_MAX chunk */ for (total_elem_left = num_unicast; total_elem_left > 0; total_elem_left -= elem_sent) { struct ice_aqc_sw_rules_elem *entry = r_iter; elem_sent = min(total_elem_left, (u16)(ICE_AQ_MAX_BUF_LEN / s_rule_size)); status = ice_aq_sw_rules(hw, entry, elem_sent * s_rule_size, elem_sent, ice_aqc_opc_remove_sw_rules, NULL); if (status) break; r_iter = (struct ice_aqc_sw_rules_elem *) ((u8 *)r_iter + s_rule_size); } list_for_each_entry(m_list_itr, m_list, list_entry) { u8 *addr = m_list_itr->fltr_info.l_data.mac.mac_addr; if (is_unicast_ether_addr(addr)) { m_entry = ice_find_mac_entry(hw, addr); if (!m_entry) return ICE_ERR_OUT_OF_RANGE; mutex_lock(&sw->mac_list_lock); list_del(&m_entry->list_entry); mutex_unlock(&sw->mac_list_lock); devm_kfree(ice_hw_to_dev(hw), m_entry); } } ice_remove_mac_exit: devm_kfree(ice_hw_to_dev(hw), s_rule); return status; } /** * ice_cfg_dflt_vsi - add filter rule to set/unset given VSI as default * VSI for the switch (represented by swid) * @hw: pointer to the hardware structure * @vsi_id: number of VSI to set as default * @set: true to add the above mentioned switch rule, false to remove it * @direction: ICE_FLTR_RX or ICE_FLTR_TX */ enum ice_status ice_cfg_dflt_vsi(struct ice_hw *hw, u16 vsi_id, bool set, u8 direction) { struct ice_aqc_sw_rules_elem *s_rule; struct ice_fltr_info f_info; enum ice_adminq_opc opcode; enum ice_status status; u16 s_rule_size; s_rule_size = set ? ICE_SW_RULE_RX_TX_ETH_HDR_SIZE : ICE_SW_RULE_RX_TX_NO_HDR_SIZE; s_rule = devm_kzalloc(ice_hw_to_dev(hw), s_rule_size, GFP_KERNEL); if (!s_rule) return ICE_ERR_NO_MEMORY; memset(&f_info, 0, sizeof(f_info)); f_info.lkup_type = ICE_SW_LKUP_DFLT; f_info.flag = direction; f_info.fltr_act = ICE_FWD_TO_VSI; f_info.fwd_id.vsi_id = vsi_id; if (f_info.flag & ICE_FLTR_RX) { f_info.src = hw->port_info->lport; if (!set) f_info.fltr_rule_id = hw->port_info->dflt_rx_vsi_rule_id; } else if (f_info.flag & ICE_FLTR_TX) { f_info.src = vsi_id; if (!set) f_info.fltr_rule_id = hw->port_info->dflt_tx_vsi_rule_id; } if (set) opcode = ice_aqc_opc_add_sw_rules; else opcode = ice_aqc_opc_remove_sw_rules; ice_fill_sw_rule(hw, &f_info, s_rule, opcode); status = ice_aq_sw_rules(hw, s_rule, s_rule_size, 1, opcode, NULL); if (status || !(f_info.flag & ICE_FLTR_TX_RX)) goto out; if (set) { u16 index = le16_to_cpu(s_rule->pdata.lkup_tx_rx.index); if (f_info.flag & ICE_FLTR_TX) { hw->port_info->dflt_tx_vsi_num = vsi_id; hw->port_info->dflt_tx_vsi_rule_id = index; } else if (f_info.flag & ICE_FLTR_RX) { hw->port_info->dflt_rx_vsi_num = vsi_id; hw->port_info->dflt_rx_vsi_rule_id = index; } } else { if (f_info.flag & ICE_FLTR_TX) { hw->port_info->dflt_tx_vsi_num = ICE_DFLT_VSI_INVAL; hw->port_info->dflt_tx_vsi_rule_id = ICE_INVAL_ACT; } else if (f_info.flag & ICE_FLTR_RX) { hw->port_info->dflt_rx_vsi_num = ICE_DFLT_VSI_INVAL; hw->port_info->dflt_rx_vsi_rule_id = ICE_INVAL_ACT; } } out: devm_kfree(ice_hw_to_dev(hw), s_rule); return status; } /** * ice_remove_vlan_internal - Remove one VLAN based filter rule * @hw: pointer to the hardware structure * @f_entry: filter entry containing one VLAN information */ static enum ice_status ice_remove_vlan_internal(struct ice_hw *hw, struct ice_fltr_list_entry *f_entry) { struct ice_fltr_info *new_fltr; struct ice_fltr_mgmt_list_entry *v_list_elem; u16 vsi_id; new_fltr = &f_entry->fltr_info; v_list_elem = ice_find_vlan_entry(hw, new_fltr->l_data.vlan.vlan_id); if (!v_list_elem) return ICE_ERR_PARAM; vsi_id = f_entry->fltr_info.fwd_id.vsi_id; return ice_handle_rem_vsi_list_mgmt(hw, vsi_id, v_list_elem); } /** * ice_remove_vlan - Remove VLAN based filter rule * @hw: pointer to the hardware structure * @v_list: list of VLAN entries and forwarding information */ enum ice_status ice_remove_vlan(struct ice_hw *hw, struct list_head *v_list) { struct ice_fltr_list_entry *v_list_itr; enum ice_status status = 0; if (!v_list || !hw) return ICE_ERR_PARAM; list_for_each_entry(v_list_itr, v_list, list_entry) { status = ice_remove_vlan_internal(hw, v_list_itr); if (status) { v_list_itr->status = ICE_FLTR_STATUS_FW_FAIL; return status; } v_list_itr->status = ICE_FLTR_STATUS_FW_SUCCESS; } return status; } /** * ice_add_to_vsi_fltr_list - Add VSI filters to the list * @hw: pointer to the hardware structure * @vsi_id: ID of VSI to remove filters from * @lkup_list_head: pointer to the list that has certain lookup type filters * @vsi_list_head: pointer to the list pertaining to VSI with vsi_id */ static enum ice_status ice_add_to_vsi_fltr_list(struct ice_hw *hw, u16 vsi_id, struct list_head *lkup_list_head, struct list_head *vsi_list_head) { struct ice_fltr_mgmt_list_entry *fm_entry; /* check to make sure VSI id is valid and within boundary */ if (vsi_id >= (sizeof(fm_entry->vsi_list_info->vsi_map) * BITS_PER_BYTE - 1)) return ICE_ERR_PARAM; list_for_each_entry(fm_entry, lkup_list_head, list_entry) { struct ice_fltr_info *fi; fi = &fm_entry->fltr_info; if ((fi->fltr_act == ICE_FWD_TO_VSI && fi->fwd_id.vsi_id == vsi_id) || (fi->fltr_act == ICE_FWD_TO_VSI_LIST && (test_bit(vsi_id, fm_entry->vsi_list_info->vsi_map)))) { struct ice_fltr_list_entry *tmp; /* this memory is freed up in the caller function * ice_remove_vsi_lkup_fltr() once filters for * this VSI are removed */ tmp = devm_kzalloc(ice_hw_to_dev(hw), sizeof(*tmp), GFP_KERNEL); if (!tmp) return ICE_ERR_NO_MEMORY; memcpy(&tmp->fltr_info, fi, sizeof(*fi)); /* Expected below fields to be set to ICE_FWD_TO_VSI and * the particular VSI id since we are only removing this * one VSI */ if (fi->fltr_act == ICE_FWD_TO_VSI_LIST) { tmp->fltr_info.fltr_act = ICE_FWD_TO_VSI; tmp->fltr_info.fwd_id.vsi_id = vsi_id; } list_add(&tmp->list_entry, vsi_list_head); } } return 0; } /** * ice_remove_vsi_lkup_fltr - Remove lookup type filters for a VSI * @hw: pointer to the hardware structure * @vsi_id: ID of VSI to remove filters from * @lkup: switch rule filter lookup type */ static void ice_remove_vsi_lkup_fltr(struct ice_hw *hw, u16 vsi_id, enum ice_sw_lkup_type lkup) { struct ice_switch_info *sw = hw->switch_info; struct ice_fltr_list_entry *fm_entry; struct list_head remove_list_head; struct ice_fltr_list_entry *tmp; enum ice_status status; INIT_LIST_HEAD(&remove_list_head); switch (lkup) { case ICE_SW_LKUP_MAC: mutex_lock(&sw->mac_list_lock); status = ice_add_to_vsi_fltr_list(hw, vsi_id, &sw->mac_list_head, &remove_list_head); mutex_unlock(&sw->mac_list_lock); if (!status) { ice_remove_mac(hw, &remove_list_head); goto free_fltr_list; } break; case ICE_SW_LKUP_VLAN: mutex_lock(&sw->vlan_list_lock); status = ice_add_to_vsi_fltr_list(hw, vsi_id, &sw->vlan_list_head, &remove_list_head); mutex_unlock(&sw->vlan_list_lock); if (!status) { ice_remove_vlan(hw, &remove_list_head); goto free_fltr_list; } break; case ICE_SW_LKUP_MAC_VLAN: case ICE_SW_LKUP_ETHERTYPE: case ICE_SW_LKUP_ETHERTYPE_MAC: case ICE_SW_LKUP_PROMISC: case ICE_SW_LKUP_PROMISC_VLAN: case ICE_SW_LKUP_DFLT: ice_debug(hw, ICE_DBG_SW, "Remove filters for this lookup type hasn't been implemented yet\n"); break; } return; free_fltr_list: list_for_each_entry_safe(fm_entry, tmp, &remove_list_head, list_entry) { list_del(&fm_entry->list_entry); devm_kfree(ice_hw_to_dev(hw), fm_entry); } } /** * ice_remove_vsi_fltr - Remove all filters for a VSI * @hw: pointer to the hardware structure * @vsi_id: ID of VSI to remove filters from */ void ice_remove_vsi_fltr(struct ice_hw *hw, u16 vsi_id) { ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_MAC); ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_MAC_VLAN); ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_PROMISC); ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_VLAN); ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_DFLT); ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_ETHERTYPE); ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_ETHERTYPE_MAC); ice_remove_vsi_lkup_fltr(hw, vsi_id, ICE_SW_LKUP_PROMISC_VLAN); }