summaryrefslogtreecommitdiff
path: root/arch/x86/boot/compressed/mem_encrypt.S
Commit message (Collapse)AuthorAge
* x86/boot: Fix SEV boot failure from change to __PHYSICAL_MASK_SHIFTTom Lendacky2018-03-28
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | In arch/x86/boot/compressed/kaslr_64.c, CONFIG_AMD_MEM_ENCRYPT support was initially #undef'd to support SME with minimal effort. When support for SEV was added, the #undef remained and some minimal support for setting the encryption bit was added for building identity mapped pagetable entries. Commit b83ce5ee9147 ("x86/mm/64: Make __PHYSICAL_MASK_SHIFT always 52") changed __PHYSICAL_MASK_SHIFT from 46 to 52 in support of 5-level paging. This change resulted in SEV guests failing to boot because the encryption bit was no longer being automatically masked out. The compressed boot path now requires sme_me_mask to be defined in order for the pagetable functions, such as pud_present(), to properly mask out the encryption bit (currently bit 47) when evaluating pagetable entries. Add an sme_me_mask variable in arch/x86/boot/compressed/mem_encrypt.S, which is set when SEV is active, delete the #undef CONFIG_AMD_MEM_ENCRYPT from arch/x86/boot/compressed/kaslr_64.c and use sme_me_mask when building the identify mapped pagetable entries. Fixes: b83ce5ee9147 ("x86/mm/64: Make __PHYSICAL_MASK_SHIFT always 52") Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Cc: Borislav Petkov <bp@alien8.de> Cc: Brijesh Singh <brijesh.singh@amd.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Cc: "H. Peter Anvin" <hpa@zytor.com> Link: https://lkml.kernel.org/r/20180327220711.8702.55842.stgit@tlendack-t1.amdoffice.net
* x86/boot: Add early boot support when running with SEV activeTom Lendacky2017-11-07
Early in the boot process, add checks to determine if the kernel is running with Secure Encrypted Virtualization (SEV) active. Checking for SEV requires checking that the kernel is running under a hypervisor (CPUID 0x00000001, bit 31), that the SEV feature is available (CPUID 0x8000001f, bit 1) and then checking a non-interceptable SEV MSR (0xc0010131, bit 0). This check is required so that during early compressed kernel booting the pagetables (both the boot pagetables and KASLR pagetables (if enabled) are updated to include the encryption mask so that when the kernel is decompressed into encrypted memory, it can boot properly. After the kernel is decompressed and continues booting the same logic is used to check if SEV is active and set a flag indicating so. This allows to distinguish between SME and SEV, each of which have unique differences in how certain things are handled: e.g. DMA (always bounce buffered with SEV) or EFI tables (always access decrypted with SME). Signed-off-by: Tom Lendacky <thomas.lendacky@amd.com> Signed-off-by: Brijesh Singh <brijesh.singh@amd.com> Signed-off-by: Thomas Gleixner <tglx@linutronix.de> Reviewed-by: Borislav Petkov <bp@suse.de> Tested-by: Borislav Petkov <bp@suse.de> Cc: Laura Abbott <labbott@redhat.com> Cc: Kees Cook <keescook@chromium.org> Cc: kvm@vger.kernel.org Cc: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com> Cc: Radim Krčmář <rkrcmar@redhat.com> Cc: Borislav Petkov <bp@alien8.de> Cc: Andy Lutomirski <luto@kernel.org> Cc: Paolo Bonzini <pbonzini@redhat.com> Cc: "Kirill A. Shutemov" <kirill.shutemov@linux.intel.com> Link: https://lkml.kernel.org/r/20171020143059.3291-13-brijesh.singh@amd.com