summaryrefslogtreecommitdiff
path: root/drivers/net/wireless/ath/ath9k/eeprom_9287.c
blob: 966b9496a9dd4b51cf5c1f850fc987ea4b6ffff2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
/*
 * Copyright (c) 2008-2009 Atheros Communications Inc.
 *
 * Permission to use, copy, modify, and/or distribute this software for any
 * purpose with or without fee is hereby granted, provided that the above
 * copyright notice and this permission notice appear in all copies.
 *
 * THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
 * WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
 * MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
 * ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
 * WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
 * ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
 * OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
 */

#include "hw.h"
#include "ar9002_phy.h"

#define NUM_EEP_WORDS (sizeof(struct ar9287_eeprom) / sizeof(u16))

static int ath9k_hw_ar9287_get_eeprom_ver(struct ath_hw *ah)
{
	return (ah->eeprom.map9287.baseEepHeader.version >> 12) & 0xF;
}

static int ath9k_hw_ar9287_get_eeprom_rev(struct ath_hw *ah)
{
	return (ah->eeprom.map9287.baseEepHeader.version) & 0xFFF;
}

static bool ath9k_hw_ar9287_fill_eeprom(struct ath_hw *ah)
{
	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
	struct ath_common *common = ath9k_hw_common(ah);
	u16 *eep_data;
	int addr, eep_start_loc;
	eep_data = (u16 *)eep;

	if (ah->hw_version.devid == 0x7015)
		eep_start_loc = AR9287_HTC_EEP_START_LOC;
	else
		eep_start_loc = AR9287_EEP_START_LOC;

	if (!ath9k_hw_use_flash(ah)) {
		ath_print(common, ATH_DBG_EEPROM,
			  "Reading from EEPROM, not flash\n");
	}

	for (addr = 0; addr < NUM_EEP_WORDS; addr++) {
		if (!ath9k_hw_nvram_read(common, addr + eep_start_loc,
					 eep_data)) {
			ath_print(common, ATH_DBG_EEPROM,
				  "Unable to read eeprom region\n");
			return false;
		}
		eep_data++;
	}

	return true;
}

static int ath9k_hw_ar9287_check_eeprom(struct ath_hw *ah)
{
	u32 sum = 0, el, integer;
	u16 temp, word, magic, magic2, *eepdata;
	int i, addr;
	bool need_swap = false;
	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
	struct ath_common *common = ath9k_hw_common(ah);

	if (!ath9k_hw_use_flash(ah)) {
		if (!ath9k_hw_nvram_read(common, AR5416_EEPROM_MAGIC_OFFSET,
					 &magic)) {
			ath_print(common, ATH_DBG_FATAL,
				  "Reading Magic # failed\n");
			return false;
		}

		ath_print(common, ATH_DBG_EEPROM,
			  "Read Magic = 0x%04X\n", magic);

		if (magic != AR5416_EEPROM_MAGIC) {
			magic2 = swab16(magic);

			if (magic2 == AR5416_EEPROM_MAGIC) {
				need_swap = true;
				eepdata = (u16 *)(&ah->eeprom);

				for (addr = 0; addr < NUM_EEP_WORDS; addr++) {
					temp = swab16(*eepdata);
					*eepdata = temp;
					eepdata++;
				}
			} else {
				ath_print(common, ATH_DBG_FATAL,
					  "Invalid EEPROM Magic. "
					  "Endianness mismatch.\n");
				return -EINVAL;
			}
		}
	}

	ath_print(common, ATH_DBG_EEPROM, "need_swap = %s.\n",
		  need_swap ? "True" : "False");

	if (need_swap)
		el = swab16(ah->eeprom.map9287.baseEepHeader.length);
	else
		el = ah->eeprom.map9287.baseEepHeader.length;

	if (el > sizeof(struct ar9287_eeprom))
		el = sizeof(struct ar9287_eeprom) / sizeof(u16);
	else
		el = el / sizeof(u16);

	eepdata = (u16 *)(&ah->eeprom);

	for (i = 0; i < el; i++)
		sum ^= *eepdata++;

	if (need_swap) {
		word = swab16(eep->baseEepHeader.length);
		eep->baseEepHeader.length = word;

		word = swab16(eep->baseEepHeader.checksum);
		eep->baseEepHeader.checksum = word;

		word = swab16(eep->baseEepHeader.version);
		eep->baseEepHeader.version = word;

		word = swab16(eep->baseEepHeader.regDmn[0]);
		eep->baseEepHeader.regDmn[0] = word;

		word = swab16(eep->baseEepHeader.regDmn[1]);
		eep->baseEepHeader.regDmn[1] = word;

		word = swab16(eep->baseEepHeader.rfSilent);
		eep->baseEepHeader.rfSilent = word;

		word = swab16(eep->baseEepHeader.blueToothOptions);
		eep->baseEepHeader.blueToothOptions = word;

		word = swab16(eep->baseEepHeader.deviceCap);
		eep->baseEepHeader.deviceCap = word;

		integer = swab32(eep->modalHeader.antCtrlCommon);
		eep->modalHeader.antCtrlCommon = integer;

		for (i = 0; i < AR9287_MAX_CHAINS; i++) {
			integer = swab32(eep->modalHeader.antCtrlChain[i]);
			eep->modalHeader.antCtrlChain[i] = integer;
		}

		for (i = 0; i < AR9287_EEPROM_MODAL_SPURS; i++) {
			word = swab16(eep->modalHeader.spurChans[i].spurChan);
			eep->modalHeader.spurChans[i].spurChan = word;
		}
	}

	if (sum != 0xffff || ah->eep_ops->get_eeprom_ver(ah) != AR9287_EEP_VER
	    || ah->eep_ops->get_eeprom_rev(ah) < AR5416_EEP_NO_BACK_VER) {
		ath_print(common, ATH_DBG_FATAL,
			  "Bad EEPROM checksum 0x%x or revision 0x%04x\n",
			   sum, ah->eep_ops->get_eeprom_ver(ah));
		return -EINVAL;
	}

	return 0;
}

static u32 ath9k_hw_ar9287_get_eeprom(struct ath_hw *ah,
				      enum eeprom_param param)
{
	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
	struct base_eep_ar9287_header *pBase = &eep->baseEepHeader;
	u16 ver_minor;

	ver_minor = pBase->version & AR9287_EEP_VER_MINOR_MASK;

	switch (param) {
	case EEP_NFTHRESH_2:
		return pModal->noiseFloorThreshCh[0];
	case EEP_MAC_LSW:
		return pBase->macAddr[0] << 8 | pBase->macAddr[1];
	case EEP_MAC_MID:
		return pBase->macAddr[2] << 8 | pBase->macAddr[3];
	case EEP_MAC_MSW:
		return pBase->macAddr[4] << 8 | pBase->macAddr[5];
	case EEP_REG_0:
		return pBase->regDmn[0];
	case EEP_REG_1:
		return pBase->regDmn[1];
	case EEP_OP_CAP:
		return pBase->deviceCap;
	case EEP_OP_MODE:
		return pBase->opCapFlags;
	case EEP_RF_SILENT:
		return pBase->rfSilent;
	case EEP_MINOR_REV:
		return ver_minor;
	case EEP_TX_MASK:
		return pBase->txMask;
	case EEP_RX_MASK:
		return pBase->rxMask;
	case EEP_DEV_TYPE:
		return pBase->deviceType;
	case EEP_OL_PWRCTRL:
		return pBase->openLoopPwrCntl;
	case EEP_TEMPSENSE_SLOPE:
		if (ver_minor >= AR9287_EEP_MINOR_VER_2)
			return pBase->tempSensSlope;
		else
			return 0;
	case EEP_TEMPSENSE_SLOPE_PAL_ON:
		if (ver_minor >= AR9287_EEP_MINOR_VER_3)
			return pBase->tempSensSlopePalOn;
		else
			return 0;
	default:
		return 0;
	}
}

static void ath9k_hw_get_ar9287_gain_boundaries_pdadcs(struct ath_hw *ah,
			       struct ath9k_channel *chan,
			       struct cal_data_per_freq_ar9287 *pRawDataSet,
			       u8 *bChans, u16 availPiers,
			       u16 tPdGainOverlap,
			       u16 *pPdGainBoundaries,
			       u8 *pPDADCValues,
			       u16 numXpdGains)
{
#define TMP_VAL_VPD_TABLE						\
	((vpdTableI[i][sizeCurrVpdTable - 1] + (ss - maxIndex + 1) * vpdStep));

	int i, j, k;
	int16_t ss;
	u16 idxL = 0, idxR = 0, numPiers;
	u8 *pVpdL, *pVpdR, *pPwrL, *pPwrR;
	u8 minPwrT4[AR9287_NUM_PD_GAINS];
	u8 maxPwrT4[AR9287_NUM_PD_GAINS];
	int16_t vpdStep;
	int16_t tmpVal;
	u16 sizeCurrVpdTable, maxIndex, tgtIndex;
	bool match;
	int16_t minDelta = 0;
	struct chan_centers centers;
	static u8 vpdTableL[AR5416_EEP4K_NUM_PD_GAINS]
		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
	static u8 vpdTableR[AR5416_EEP4K_NUM_PD_GAINS]
		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];
	static u8 vpdTableI[AR5416_EEP4K_NUM_PD_GAINS]
		[AR5416_MAX_PWR_RANGE_IN_HALF_DB];

	memset(&minPwrT4, 0, AR9287_NUM_PD_GAINS);
	ath9k_hw_get_channel_centers(ah, chan, &centers);

	for (numPiers = 0; numPiers < availPiers; numPiers++) {
		if (bChans[numPiers] == AR9287_BCHAN_UNUSED)
			break;
	}

	match = ath9k_hw_get_lower_upper_index(
		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
		bChans, numPiers, &idxL, &idxR);

	if (match) {
		for (i = 0; i < numXpdGains; i++) {
			minPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][0];
			maxPwrT4[i] = pRawDataSet[idxL].pwrPdg[i][4];
			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
						pRawDataSet[idxL].pwrPdg[i],
						pRawDataSet[idxL].vpdPdg[i],
						AR9287_PD_GAIN_ICEPTS,
						vpdTableI[i]);
		}
	} else {
		for (i = 0; i < numXpdGains; i++) {
			pVpdL = pRawDataSet[idxL].vpdPdg[i];
			pPwrL = pRawDataSet[idxL].pwrPdg[i];
			pVpdR = pRawDataSet[idxR].vpdPdg[i];
			pPwrR = pRawDataSet[idxR].pwrPdg[i];

			minPwrT4[i] = max(pPwrL[0], pPwrR[0]);

			maxPwrT4[i] = min(pPwrL[AR9287_PD_GAIN_ICEPTS - 1],
					  pPwrR[AR9287_PD_GAIN_ICEPTS - 1]);

			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
						pPwrL, pVpdL,
						AR9287_PD_GAIN_ICEPTS,
						vpdTableL[i]);
			ath9k_hw_fill_vpd_table(minPwrT4[i], maxPwrT4[i],
						pPwrR, pVpdR,
						AR9287_PD_GAIN_ICEPTS,
						vpdTableR[i]);

			for (j = 0; j <= (maxPwrT4[i] - minPwrT4[i]) / 2; j++) {
				vpdTableI[i][j] = (u8)(ath9k_hw_interpolate(
				       (u16)FREQ2FBIN(centers. synth_center,
						      IS_CHAN_2GHZ(chan)),
				       bChans[idxL], bChans[idxR],
				       vpdTableL[i][j], vpdTableR[i][j]));
			}
		}
	}

	k = 0;

	for (i = 0; i < numXpdGains; i++) {
		if (i == (numXpdGains - 1))
			pPdGainBoundaries[i] =
				(u16)(maxPwrT4[i] / 2);
		else
			pPdGainBoundaries[i] =
				(u16)((maxPwrT4[i] + minPwrT4[i+1]) / 4);

		pPdGainBoundaries[i] = min((u16)AR5416_MAX_RATE_POWER,
					   pPdGainBoundaries[i]);


		minDelta = 0;

		if (i == 0) {
			if (AR_SREV_9280_20_OR_LATER(ah))
				ss = (int16_t)(0 - (minPwrT4[i] / 2));
			else
				ss = 0;
		} else {
			ss = (int16_t)((pPdGainBoundaries[i-1] -
					(minPwrT4[i] / 2)) -
				       tPdGainOverlap + 1 + minDelta);
		}

		vpdStep = (int16_t)(vpdTableI[i][1] - vpdTableI[i][0]);
		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);

		while ((ss < 0) && (k < (AR9287_NUM_PDADC_VALUES - 1)))	{
			tmpVal = (int16_t)(vpdTableI[i][0] + ss * vpdStep);
			pPDADCValues[k++] = (u8)((tmpVal < 0) ? 0 : tmpVal);
			ss++;
		}

		sizeCurrVpdTable = (u8)((maxPwrT4[i] - minPwrT4[i]) / 2 + 1);
		tgtIndex = (u8)(pPdGainBoundaries[i] +
				tPdGainOverlap - (minPwrT4[i] / 2));
		maxIndex = (tgtIndex < sizeCurrVpdTable) ?
			    tgtIndex : sizeCurrVpdTable;

		while ((ss < maxIndex) && (k < (AR9287_NUM_PDADC_VALUES - 1)))
			pPDADCValues[k++] = vpdTableI[i][ss++];

		vpdStep = (int16_t)(vpdTableI[i][sizeCurrVpdTable - 1] -
				    vpdTableI[i][sizeCurrVpdTable - 2]);
		vpdStep = (int16_t)((vpdStep < 1) ? 1 : vpdStep);

		if (tgtIndex > maxIndex) {
			while ((ss <= tgtIndex) &&
				(k < (AR9287_NUM_PDADC_VALUES - 1))) {
				tmpVal = (int16_t) TMP_VAL_VPD_TABLE;
				pPDADCValues[k++] =
					(u8)((tmpVal > 255) ? 255 : tmpVal);
				ss++;
			}
		}
	}

	while (i < AR9287_PD_GAINS_IN_MASK) {
		pPdGainBoundaries[i] = pPdGainBoundaries[i-1];
		i++;
	}

	while (k < AR9287_NUM_PDADC_VALUES) {
		pPDADCValues[k] = pPDADCValues[k-1];
		k++;
	}

#undef TMP_VAL_VPD_TABLE
}

static void ar9287_eeprom_get_tx_gain_index(struct ath_hw *ah,
			    struct ath9k_channel *chan,
			    struct cal_data_op_loop_ar9287 *pRawDatasetOpLoop,
			    u8 *pCalChans,  u16 availPiers, int8_t *pPwr)
{
	u16 idxL = 0, idxR = 0, numPiers;
	bool match;
	struct chan_centers centers;

	ath9k_hw_get_channel_centers(ah, chan, &centers);

	for (numPiers = 0; numPiers < availPiers; numPiers++) {
		if (pCalChans[numPiers] == AR9287_BCHAN_UNUSED)
			break;
	}

	match = ath9k_hw_get_lower_upper_index(
		(u8)FREQ2FBIN(centers.synth_center, IS_CHAN_2GHZ(chan)),
		pCalChans, numPiers, &idxL, &idxR);

	if (match) {
		*pPwr = (int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0];
	} else {
		*pPwr = ((int8_t) pRawDatasetOpLoop[idxL].pwrPdg[0][0] +
			 (int8_t) pRawDatasetOpLoop[idxR].pwrPdg[0][0])/2;
	}

}

static void ar9287_eeprom_olpc_set_pdadcs(struct ath_hw *ah,
					  int32_t txPower, u16 chain)
{
	u32 tmpVal;
	u32 a;

	/* Enable OLPC for chain 0 */

	tmpVal = REG_READ(ah, 0xa270);
	tmpVal = tmpVal & 0xFCFFFFFF;
	tmpVal = tmpVal | (0x3 << 24);
	REG_WRITE(ah, 0xa270, tmpVal);

	/* Enable OLPC for chain 1 */

	tmpVal = REG_READ(ah, 0xb270);
	tmpVal = tmpVal & 0xFCFFFFFF;
	tmpVal = tmpVal | (0x3 << 24);
	REG_WRITE(ah, 0xb270, tmpVal);

	/* Write the OLPC ref power for chain 0 */

	if (chain == 0) {
		tmpVal = REG_READ(ah, 0xa398);
		tmpVal = tmpVal & 0xff00ffff;
		a = (txPower)&0xff;
		tmpVal = tmpVal | (a << 16);
		REG_WRITE(ah, 0xa398, tmpVal);
	}

	/* Write the OLPC ref power for chain 1 */

	if (chain == 1) {
		tmpVal = REG_READ(ah, 0xb398);
		tmpVal = tmpVal & 0xff00ffff;
		a = (txPower)&0xff;
		tmpVal = tmpVal | (a << 16);
		REG_WRITE(ah, 0xb398, tmpVal);
	}
}

static void ath9k_hw_set_ar9287_power_cal_table(struct ath_hw *ah,
						struct ath9k_channel *chan,
						int16_t *pTxPowerIndexOffset)
{
	struct cal_data_per_freq_ar9287 *pRawDataset;
	struct cal_data_op_loop_ar9287 *pRawDatasetOpenLoop;
	u8 *pCalBChans = NULL;
	u16 pdGainOverlap_t2;
	u8 pdadcValues[AR9287_NUM_PDADC_VALUES];
	u16 gainBoundaries[AR9287_PD_GAINS_IN_MASK];
	u16 numPiers = 0, i, j;
	u16 numXpdGain, xpdMask;
	u16 xpdGainValues[AR9287_NUM_PD_GAINS] = {0, 0, 0, 0};
	u32 reg32, regOffset, regChainOffset, regval;
	int16_t modalIdx, diff = 0;
	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;

	modalIdx = IS_CHAN_2GHZ(chan) ? 1 : 0;
	xpdMask = pEepData->modalHeader.xpdGain;

	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
	    AR9287_EEP_MINOR_VER_2)
		pdGainOverlap_t2 = pEepData->modalHeader.pdGainOverlap;
	else
		pdGainOverlap_t2 = (u16)(MS(REG_READ(ah, AR_PHY_TPCRG5),
					    AR_PHY_TPCRG5_PD_GAIN_OVERLAP));

	if (IS_CHAN_2GHZ(chan)) {
		pCalBChans = pEepData->calFreqPier2G;
		numPiers = AR9287_NUM_2G_CAL_PIERS;
		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
			pRawDatasetOpenLoop =
			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[0];
			ah->initPDADC = pRawDatasetOpenLoop->vpdPdg[0][0];
		}
	}

	numXpdGain = 0;

	/* Calculate the value of xpdgains from the xpdGain Mask */
	for (i = 1; i <= AR9287_PD_GAINS_IN_MASK; i++) {
		if ((xpdMask >> (AR9287_PD_GAINS_IN_MASK - i)) & 1) {
			if (numXpdGain >= AR9287_NUM_PD_GAINS)
				break;
			xpdGainValues[numXpdGain] =
				(u16)(AR9287_PD_GAINS_IN_MASK-i);
			numXpdGain++;
		}
	}

	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_NUM_PD_GAIN,
		      (numXpdGain - 1) & 0x3);
	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_1,
		      xpdGainValues[0]);
	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_2,
		      xpdGainValues[1]);
	REG_RMW_FIELD(ah, AR_PHY_TPCRG1, AR_PHY_TPCRG1_PD_GAIN_3,
		      xpdGainValues[2]);

	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
		regChainOffset = i * 0x1000;

		if (pEepData->baseEepHeader.txMask & (1 << i)) {
			pRawDatasetOpenLoop =
			(struct cal_data_op_loop_ar9287 *)pEepData->calPierData2G[i];

			if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
				int8_t txPower;
				ar9287_eeprom_get_tx_gain_index(ah, chan,
							pRawDatasetOpenLoop,
							pCalBChans, numPiers,
							&txPower);
				ar9287_eeprom_olpc_set_pdadcs(ah, txPower, i);
			} else {
				pRawDataset =
					(struct cal_data_per_freq_ar9287 *)
					pEepData->calPierData2G[i];

				ath9k_hw_get_ar9287_gain_boundaries_pdadcs(ah, chan,
							   pRawDataset,
							   pCalBChans, numPiers,
							   pdGainOverlap_t2,
							   gainBoundaries,
							   pdadcValues,
							   numXpdGain);
			}

			if (i == 0) {
				if (!ath9k_hw_ar9287_get_eeprom(ah,
							EEP_OL_PWRCTRL)) {

					regval = SM(pdGainOverlap_t2,
						    AR_PHY_TPCRG5_PD_GAIN_OVERLAP)
						| SM(gainBoundaries[0],
						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_1)
						| SM(gainBoundaries[1],
						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_2)
						| SM(gainBoundaries[2],
						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_3)
						| SM(gainBoundaries[3],
						     AR_PHY_TPCRG5_PD_GAIN_BOUNDARY_4);

					REG_WRITE(ah,
						  AR_PHY_TPCRG5 + regChainOffset,
						  regval);
				}
			}

			if ((int32_t)AR9287_PWR_TABLE_OFFSET_DB !=
			    pEepData->baseEepHeader.pwrTableOffset) {
				diff = (u16)(pEepData->baseEepHeader.pwrTableOffset -
					     (int32_t)AR9287_PWR_TABLE_OFFSET_DB);
				diff *= 2;

				for (j = 0; j < ((u16)AR9287_NUM_PDADC_VALUES-diff); j++)
					pdadcValues[j] = pdadcValues[j+diff];

				for (j = (u16)(AR9287_NUM_PDADC_VALUES-diff);
				     j < AR9287_NUM_PDADC_VALUES; j++)
					pdadcValues[j] =
					  pdadcValues[AR9287_NUM_PDADC_VALUES-diff];
			}

			if (!ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
				regOffset = AR_PHY_BASE +
					(672 << 2) + regChainOffset;

				for (j = 0; j < 32; j++) {
					reg32 = ((pdadcValues[4*j + 0] & 0xFF) << 0)
						| ((pdadcValues[4*j + 1] & 0xFF) << 8)
						| ((pdadcValues[4*j + 2] & 0xFF) << 16)
						| ((pdadcValues[4*j + 3] & 0xFF) << 24);

					REG_WRITE(ah, regOffset, reg32);
					regOffset += 4;
				}
			}
		}
	}

	*pTxPowerIndexOffset = 0;
}

static void ath9k_hw_set_ar9287_power_per_rate_table(struct ath_hw *ah,
						     struct ath9k_channel *chan,
						     int16_t *ratesArray,
						     u16 cfgCtl,
						     u16 AntennaReduction,
						     u16 twiceMaxRegulatoryPower,
						     u16 powerLimit)
{
#define CMP_CTL \
	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
	 pEepData->ctlIndex[i])

#define CMP_NO_CTL \
	(((cfgCtl & ~CTL_MODE_M) | (pCtlMode[ctlMode] & CTL_MODE_M)) == \
	 ((pEepData->ctlIndex[i] & CTL_MODE_M) | SD_NO_CTL))

#define REDUCE_SCALED_POWER_BY_TWO_CHAIN     6
#define REDUCE_SCALED_POWER_BY_THREE_CHAIN   10

	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
	u16 twiceMaxEdgePower = AR5416_MAX_RATE_POWER;
	static const u16 tpScaleReductionTable[5] =
		{ 0, 3, 6, 9, AR5416_MAX_RATE_POWER };
	int i;
	int16_t twiceLargestAntenna;
	struct cal_ctl_data_ar9287 *rep;
	struct cal_target_power_leg targetPowerOfdm = {0, {0, 0, 0, 0} },
				    targetPowerCck = {0, {0, 0, 0, 0} };
	struct cal_target_power_leg targetPowerOfdmExt = {0, {0, 0, 0, 0} },
				    targetPowerCckExt = {0, {0, 0, 0, 0} };
	struct cal_target_power_ht targetPowerHt20,
				    targetPowerHt40 = {0, {0, 0, 0, 0} };
	u16 scaledPower = 0, minCtlPower, maxRegAllowedPower;
	u16 ctlModesFor11g[] = {CTL_11B,
				CTL_11G,
				CTL_2GHT20,
				CTL_11B_EXT,
				CTL_11G_EXT,
				CTL_2GHT40};
	u16 numCtlModes = 0, *pCtlMode = NULL, ctlMode, freq;
	struct chan_centers centers;
	int tx_chainmask;
	u16 twiceMinEdgePower;
	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
	tx_chainmask = ah->txchainmask;

	ath9k_hw_get_channel_centers(ah, chan, &centers);

	/* Compute TxPower reduction due to Antenna Gain */
	twiceLargestAntenna = max(pEepData->modalHeader.antennaGainCh[0],
				  pEepData->modalHeader.antennaGainCh[1]);
	twiceLargestAntenna = (int16_t)min((AntennaReduction) -
					   twiceLargestAntenna, 0);

	/*
	 * scaledPower is the minimum of the user input power level
	 * and the regulatory allowed power level.
	 */
	maxRegAllowedPower = twiceMaxRegulatoryPower + twiceLargestAntenna;

	if (regulatory->tp_scale != ATH9K_TP_SCALE_MAX)
		maxRegAllowedPower -=
			(tpScaleReductionTable[(regulatory->tp_scale)] * 2);

	scaledPower = min(powerLimit, maxRegAllowedPower);

	/*
	 * Reduce scaled Power by number of chains active
	 * to get the per chain tx power level.
	 */
	switch (ar5416_get_ntxchains(tx_chainmask)) {
	case 1:
		break;
	case 2:
		scaledPower -= REDUCE_SCALED_POWER_BY_TWO_CHAIN;
		break;
	case 3:
		scaledPower -= REDUCE_SCALED_POWER_BY_THREE_CHAIN;
		break;
	}
	scaledPower = max((u16)0, scaledPower);

	/*
	 * Get TX power from EEPROM.
	 */
	if (IS_CHAN_2GHZ(chan))	{
		/* CTL_11B, CTL_11G, CTL_2GHT20 */
		numCtlModes =
			ARRAY_SIZE(ctlModesFor11g) - SUB_NUM_CTL_MODES_AT_2G_40;

		pCtlMode = ctlModesFor11g;

		ath9k_hw_get_legacy_target_powers(ah, chan,
						  pEepData->calTargetPowerCck,
						  AR9287_NUM_2G_CCK_TARGET_POWERS,
						  &targetPowerCck, 4, false);
		ath9k_hw_get_legacy_target_powers(ah, chan,
						  pEepData->calTargetPower2G,
						  AR9287_NUM_2G_20_TARGET_POWERS,
						  &targetPowerOfdm, 4, false);
		ath9k_hw_get_target_powers(ah, chan,
					   pEepData->calTargetPower2GHT20,
					   AR9287_NUM_2G_20_TARGET_POWERS,
					   &targetPowerHt20, 8, false);

		if (IS_CHAN_HT40(chan))	{
			/* All 2G CTLs */
			numCtlModes = ARRAY_SIZE(ctlModesFor11g);
			ath9k_hw_get_target_powers(ah, chan,
						   pEepData->calTargetPower2GHT40,
						   AR9287_NUM_2G_40_TARGET_POWERS,
						   &targetPowerHt40, 8, true);
			ath9k_hw_get_legacy_target_powers(ah, chan,
						  pEepData->calTargetPowerCck,
						  AR9287_NUM_2G_CCK_TARGET_POWERS,
						  &targetPowerCckExt, 4, true);
			ath9k_hw_get_legacy_target_powers(ah, chan,
						  pEepData->calTargetPower2G,
						  AR9287_NUM_2G_20_TARGET_POWERS,
						  &targetPowerOfdmExt, 4, true);
		}
	}

	for (ctlMode = 0; ctlMode < numCtlModes; ctlMode++) {
		bool isHt40CtlMode =
			(pCtlMode[ctlMode] == CTL_2GHT40) ? true : false;

		if (isHt40CtlMode)
			freq = centers.synth_center;
		else if (pCtlMode[ctlMode] & EXT_ADDITIVE)
			freq = centers.ext_center;
		else
			freq = centers.ctl_center;

		/* Walk through the CTL indices stored in EEPROM */
		for (i = 0; (i < AR9287_NUM_CTLS) && pEepData->ctlIndex[i]; i++) {
			struct cal_ctl_edges *pRdEdgesPower;

			/*
			 * Compare test group from regulatory channel list
			 * with test mode from pCtlMode list
			 */
			if (CMP_CTL || CMP_NO_CTL) {
				rep = &(pEepData->ctlData[i]);
				pRdEdgesPower =
				rep->ctlEdges[ar5416_get_ntxchains(tx_chainmask) - 1];

				twiceMinEdgePower = ath9k_hw_get_max_edge_power(freq,
								pRdEdgesPower,
								IS_CHAN_2GHZ(chan),
								AR5416_NUM_BAND_EDGES);

				if ((cfgCtl & ~CTL_MODE_M) == SD_NO_CTL) {
					twiceMaxEdgePower = min(twiceMaxEdgePower,
								twiceMinEdgePower);
				} else {
					twiceMaxEdgePower = twiceMinEdgePower;
					break;
				}
			}
		}

		minCtlPower = (u8)min(twiceMaxEdgePower, scaledPower);

		/* Apply ctl mode to correct target power set */
		switch (pCtlMode[ctlMode]) {
		case CTL_11B:
			for (i = 0; i < ARRAY_SIZE(targetPowerCck.tPow2x); i++) {
				targetPowerCck.tPow2x[i] =
					(u8)min((u16)targetPowerCck.tPow2x[i],
						minCtlPower);
			}
			break;
		case CTL_11A:
		case CTL_11G:
			for (i = 0; i < ARRAY_SIZE(targetPowerOfdm.tPow2x); i++) {
				targetPowerOfdm.tPow2x[i] =
					(u8)min((u16)targetPowerOfdm.tPow2x[i],
						minCtlPower);
			}
			break;
		case CTL_5GHT20:
		case CTL_2GHT20:
			for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++) {
				targetPowerHt20.tPow2x[i] =
					(u8)min((u16)targetPowerHt20.tPow2x[i],
						minCtlPower);
			}
			break;
		case CTL_11B_EXT:
			targetPowerCckExt.tPow2x[0] =
				(u8)min((u16)targetPowerCckExt.tPow2x[0],
					minCtlPower);
			break;
		case CTL_11A_EXT:
		case CTL_11G_EXT:
			targetPowerOfdmExt.tPow2x[0] =
				(u8)min((u16)targetPowerOfdmExt.tPow2x[0],
					minCtlPower);
			break;
		case CTL_5GHT40:
		case CTL_2GHT40:
			for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++) {
				targetPowerHt40.tPow2x[i] =
					(u8)min((u16)targetPowerHt40.tPow2x[i],
						minCtlPower);
			}
			break;
		default:
			break;
		}
	}

	/* Now set the rates array */

	ratesArray[rate6mb] =
	ratesArray[rate9mb] =
	ratesArray[rate12mb] =
	ratesArray[rate18mb] =
	ratesArray[rate24mb] = targetPowerOfdm.tPow2x[0];

	ratesArray[rate36mb] = targetPowerOfdm.tPow2x[1];
	ratesArray[rate48mb] = targetPowerOfdm.tPow2x[2];
	ratesArray[rate54mb] = targetPowerOfdm.tPow2x[3];
	ratesArray[rateXr] = targetPowerOfdm.tPow2x[0];

	for (i = 0; i < ARRAY_SIZE(targetPowerHt20.tPow2x); i++)
		ratesArray[rateHt20_0 + i] = targetPowerHt20.tPow2x[i];

	if (IS_CHAN_2GHZ(chan))	{
		ratesArray[rate1l] = targetPowerCck.tPow2x[0];
		ratesArray[rate2s] =
		ratesArray[rate2l] = targetPowerCck.tPow2x[1];
		ratesArray[rate5_5s] =
		ratesArray[rate5_5l] = targetPowerCck.tPow2x[2];
		ratesArray[rate11s] =
		ratesArray[rate11l] = targetPowerCck.tPow2x[3];
	}
	if (IS_CHAN_HT40(chan))	{
		for (i = 0; i < ARRAY_SIZE(targetPowerHt40.tPow2x); i++)
			ratesArray[rateHt40_0 + i] = targetPowerHt40.tPow2x[i];

		ratesArray[rateDupOfdm] = targetPowerHt40.tPow2x[0];
		ratesArray[rateDupCck]  = targetPowerHt40.tPow2x[0];
		ratesArray[rateExtOfdm] = targetPowerOfdmExt.tPow2x[0];

		if (IS_CHAN_2GHZ(chan))
			ratesArray[rateExtCck] = targetPowerCckExt.tPow2x[0];
	}

#undef CMP_CTL
#undef CMP_NO_CTL
#undef REDUCE_SCALED_POWER_BY_TWO_CHAIN
#undef REDUCE_SCALED_POWER_BY_THREE_CHAIN
}

static void ath9k_hw_ar9287_set_txpower(struct ath_hw *ah,
					struct ath9k_channel *chan, u16 cfgCtl,
					u8 twiceAntennaReduction,
					u8 twiceMaxRegulatoryPower,
					u8 powerLimit)
{
	struct ath_regulatory *regulatory = ath9k_hw_regulatory(ah);
	struct ar9287_eeprom *pEepData = &ah->eeprom.map9287;
	struct modal_eep_ar9287_header *pModal = &pEepData->modalHeader;
	int16_t ratesArray[Ar5416RateSize];
	int16_t txPowerIndexOffset = 0;
	u8 ht40PowerIncForPdadc = 2;
	int i;

	memset(ratesArray, 0, sizeof(ratesArray));

	if ((pEepData->baseEepHeader.version & AR9287_EEP_VER_MINOR_MASK) >=
	    AR9287_EEP_MINOR_VER_2)
		ht40PowerIncForPdadc = pModal->ht40PowerIncForPdadc;

	ath9k_hw_set_ar9287_power_per_rate_table(ah, chan,
						 &ratesArray[0], cfgCtl,
						 twiceAntennaReduction,
						 twiceMaxRegulatoryPower,
						 powerLimit);

	ath9k_hw_set_ar9287_power_cal_table(ah, chan, &txPowerIndexOffset);

	for (i = 0; i < ARRAY_SIZE(ratesArray); i++) {
		ratesArray[i] = (int16_t)(txPowerIndexOffset + ratesArray[i]);
		if (ratesArray[i] > AR9287_MAX_RATE_POWER)
			ratesArray[i] = AR9287_MAX_RATE_POWER;
	}

	if (AR_SREV_9280_20_OR_LATER(ah)) {
		for (i = 0; i < Ar5416RateSize; i++)
			ratesArray[i] -= AR9287_PWR_TABLE_OFFSET_DB * 2;
	}

	/* OFDM power per rate */
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE1,
		  ATH9K_POW_SM(ratesArray[rate18mb], 24)
		  | ATH9K_POW_SM(ratesArray[rate12mb], 16)
		  | ATH9K_POW_SM(ratesArray[rate9mb], 8)
		  | ATH9K_POW_SM(ratesArray[rate6mb], 0));

	REG_WRITE(ah, AR_PHY_POWER_TX_RATE2,
		  ATH9K_POW_SM(ratesArray[rate54mb], 24)
		  | ATH9K_POW_SM(ratesArray[rate48mb], 16)
		  | ATH9K_POW_SM(ratesArray[rate36mb], 8)
		  | ATH9K_POW_SM(ratesArray[rate24mb], 0));

	/* CCK power per rate */
	if (IS_CHAN_2GHZ(chan))	{
		REG_WRITE(ah, AR_PHY_POWER_TX_RATE3,
			  ATH9K_POW_SM(ratesArray[rate2s], 24)
			  | ATH9K_POW_SM(ratesArray[rate2l], 16)
			  | ATH9K_POW_SM(ratesArray[rateXr], 8)
			  | ATH9K_POW_SM(ratesArray[rate1l], 0));
		REG_WRITE(ah, AR_PHY_POWER_TX_RATE4,
			  ATH9K_POW_SM(ratesArray[rate11s], 24)
			  | ATH9K_POW_SM(ratesArray[rate11l], 16)
			  | ATH9K_POW_SM(ratesArray[rate5_5s], 8)
			  | ATH9K_POW_SM(ratesArray[rate5_5l], 0));
	}

	/* HT20 power per rate */
	REG_WRITE(ah, AR_PHY_POWER_TX_RATE5,
		  ATH9K_POW_SM(ratesArray[rateHt20_3], 24)
		  | ATH9K_POW_SM(ratesArray[rateHt20_2], 16)
		  | ATH9K_POW_SM(ratesArray[rateHt20_1], 8)
		  | ATH9K_POW_SM(ratesArray[rateHt20_0], 0));

	REG_WRITE(ah, AR_PHY_POWER_TX_RATE6,
		  ATH9K_POW_SM(ratesArray[rateHt20_7], 24)
		  | ATH9K_POW_SM(ratesArray[rateHt20_6], 16)
		  | ATH9K_POW_SM(ratesArray[rateHt20_5], 8)
		  | ATH9K_POW_SM(ratesArray[rateHt20_4], 0));

	/* HT40 power per rate */
	if (IS_CHAN_HT40(chan))	{
		if (ath9k_hw_ar9287_get_eeprom(ah, EEP_OL_PWRCTRL)) {
			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
				  ATH9K_POW_SM(ratesArray[rateHt40_3], 24)
				  | ATH9K_POW_SM(ratesArray[rateHt40_2], 16)
				  | ATH9K_POW_SM(ratesArray[rateHt40_1], 8)
				  | ATH9K_POW_SM(ratesArray[rateHt40_0], 0));

			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
				  ATH9K_POW_SM(ratesArray[rateHt40_7], 24)
				  | ATH9K_POW_SM(ratesArray[rateHt40_6], 16)
				  | ATH9K_POW_SM(ratesArray[rateHt40_5], 8)
				  | ATH9K_POW_SM(ratesArray[rateHt40_4], 0));
		} else {
			REG_WRITE(ah, AR_PHY_POWER_TX_RATE7,
				  ATH9K_POW_SM(ratesArray[rateHt40_3] +
					       ht40PowerIncForPdadc, 24)
				  | ATH9K_POW_SM(ratesArray[rateHt40_2] +
						 ht40PowerIncForPdadc, 16)
				  | ATH9K_POW_SM(ratesArray[rateHt40_1] +
						 ht40PowerIncForPdadc, 8)
				  | ATH9K_POW_SM(ratesArray[rateHt40_0] +
						 ht40PowerIncForPdadc, 0));

			REG_WRITE(ah, AR_PHY_POWER_TX_RATE8,
				  ATH9K_POW_SM(ratesArray[rateHt40_7] +
					       ht40PowerIncForPdadc, 24)
				  | ATH9K_POW_SM(ratesArray[rateHt40_6] +
						 ht40PowerIncForPdadc, 16)
				  | ATH9K_POW_SM(ratesArray[rateHt40_5] +
						 ht40PowerIncForPdadc, 8)
				  | ATH9K_POW_SM(ratesArray[rateHt40_4] +
						 ht40PowerIncForPdadc, 0));
		}

		/* Dup/Ext power per rate */
		REG_WRITE(ah, AR_PHY_POWER_TX_RATE9,
			  ATH9K_POW_SM(ratesArray[rateExtOfdm], 24)
			  | ATH9K_POW_SM(ratesArray[rateExtCck], 16)
			  | ATH9K_POW_SM(ratesArray[rateDupOfdm], 8)
			  | ATH9K_POW_SM(ratesArray[rateDupCck], 0));
	}

	if (IS_CHAN_2GHZ(chan))
		i = rate1l;
	else
		i = rate6mb;

	if (AR_SREV_9280_20_OR_LATER(ah))
		regulatory->max_power_level =
			ratesArray[i] + AR9287_PWR_TABLE_OFFSET_DB * 2;
	else
		regulatory->max_power_level = ratesArray[i];
}

static void ath9k_hw_ar9287_set_addac(struct ath_hw *ah,
				      struct ath9k_channel *chan)
{
}

static void ath9k_hw_ar9287_set_board_values(struct ath_hw *ah,
					     struct ath9k_channel *chan)
{
	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;
	u16 antWrites[AR9287_ANT_16S];
	u32 regChainOffset, regval;
	u8 txRxAttenLocal;
	int i, j, offset_num;

	pModal = &eep->modalHeader;

	antWrites[0] = (u16)((pModal->antCtrlCommon >> 28) & 0xF);
	antWrites[1] = (u16)((pModal->antCtrlCommon >> 24) & 0xF);
	antWrites[2] = (u16)((pModal->antCtrlCommon >> 20) & 0xF);
	antWrites[3] = (u16)((pModal->antCtrlCommon >> 16) & 0xF);
	antWrites[4] = (u16)((pModal->antCtrlCommon >> 12) & 0xF);
	antWrites[5] = (u16)((pModal->antCtrlCommon >> 8) & 0xF);
	antWrites[6] = (u16)((pModal->antCtrlCommon >> 4)  & 0xF);
	antWrites[7] = (u16)(pModal->antCtrlCommon & 0xF);

	offset_num = 8;

	for (i = 0, j = offset_num; i < AR9287_MAX_CHAINS; i++) {
		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 28) & 0xf);
		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 10) & 0x3);
		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 8) & 0x3);
		antWrites[j++] = 0;
		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 6) & 0x3);
		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 4) & 0x3);
		antWrites[j++] = (u16)((pModal->antCtrlChain[i] >> 2) & 0x3);
		antWrites[j++] = (u16)(pModal->antCtrlChain[i] & 0x3);
	}

	REG_WRITE(ah, AR_PHY_SWITCH_COM,
		  ah->eep_ops->get_eeprom_antenna_cfg(ah, chan));

	for (i = 0; i < AR9287_MAX_CHAINS; i++)	{
		regChainOffset = i * 0x1000;

		REG_WRITE(ah, AR_PHY_SWITCH_CHAIN_0 + regChainOffset,
			  pModal->antCtrlChain[i]);

		REG_WRITE(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset,
			  (REG_READ(ah, AR_PHY_TIMING_CTRL4(0) + regChainOffset)
			   & ~(AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF |
			       AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF)) |
			  SM(pModal->iqCalICh[i],
			     AR_PHY_TIMING_CTRL4_IQCORR_Q_I_COFF) |
			  SM(pModal->iqCalQCh[i],
			     AR_PHY_TIMING_CTRL4_IQCORR_Q_Q_COFF));

		txRxAttenLocal = pModal->txRxAttenCh[i];

		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
			      AR_PHY_GAIN_2GHZ_XATTEN1_MARGIN,
			      pModal->bswMargin[i]);
		REG_RMW_FIELD(ah, AR_PHY_GAIN_2GHZ + regChainOffset,
			      AR_PHY_GAIN_2GHZ_XATTEN1_DB,
			      pModal->bswAtten[i]);
		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
			      AR9280_PHY_RXGAIN_TXRX_ATTEN,
			      txRxAttenLocal);
		REG_RMW_FIELD(ah, AR_PHY_RXGAIN + regChainOffset,
			      AR9280_PHY_RXGAIN_TXRX_MARGIN,
			      pModal->rxTxMarginCh[i]);
	}


	if (IS_CHAN_HT40(chan))
		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
			      AR_PHY_SETTLING_SWITCH, pModal->swSettleHt40);
	else
		REG_RMW_FIELD(ah, AR_PHY_SETTLING,
			      AR_PHY_SETTLING_SWITCH, pModal->switchSettling);

	REG_RMW_FIELD(ah, AR_PHY_DESIRED_SZ,
		      AR_PHY_DESIRED_SZ_ADC, pModal->adcDesiredSize);

	REG_WRITE(ah, AR_PHY_RF_CTL4,
		  SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAA_OFF)
		  | SM(pModal->txEndToXpaOff, AR_PHY_RF_CTL4_TX_END_XPAB_OFF)
		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAA_ON)
		  | SM(pModal->txFrameToXpaOn, AR_PHY_RF_CTL4_FRAME_XPAB_ON));

	REG_RMW_FIELD(ah, AR_PHY_RF_CTL3,
		      AR_PHY_TX_END_TO_A2_RX_ON, pModal->txEndToRxOn);

	REG_RMW_FIELD(ah, AR_PHY_CCA,
		      AR9280_PHY_CCA_THRESH62, pModal->thresh62);
	REG_RMW_FIELD(ah, AR_PHY_EXT_CCA0,
		      AR_PHY_EXT_CCA0_THRESH62, pModal->thresh62);

	regval = REG_READ(ah, AR9287_AN_RF2G3_CH0);
	regval &= ~(AR9287_AN_RF2G3_DB1 |
		    AR9287_AN_RF2G3_DB2 |
		    AR9287_AN_RF2G3_OB_CCK |
		    AR9287_AN_RF2G3_OB_PSK |
		    AR9287_AN_RF2G3_OB_QAM |
		    AR9287_AN_RF2G3_OB_PAL_OFF);
	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));

	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH0, regval);

	regval = REG_READ(ah, AR9287_AN_RF2G3_CH1);
	regval &= ~(AR9287_AN_RF2G3_DB1 |
		    AR9287_AN_RF2G3_DB2 |
		    AR9287_AN_RF2G3_OB_CCK |
		    AR9287_AN_RF2G3_OB_PSK |
		    AR9287_AN_RF2G3_OB_QAM |
		    AR9287_AN_RF2G3_OB_PAL_OFF);
	regval |= (SM(pModal->db1, AR9287_AN_RF2G3_DB1) |
		   SM(pModal->db2, AR9287_AN_RF2G3_DB2) |
		   SM(pModal->ob_cck, AR9287_AN_RF2G3_OB_CCK) |
		   SM(pModal->ob_psk, AR9287_AN_RF2G3_OB_PSK) |
		   SM(pModal->ob_qam, AR9287_AN_RF2G3_OB_QAM) |
		   SM(pModal->ob_pal_off, AR9287_AN_RF2G3_OB_PAL_OFF));

	ath9k_hw_analog_shift_regwrite(ah, AR9287_AN_RF2G3_CH1, regval);

	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
		      AR_PHY_TX_END_DATA_START, pModal->txFrameToDataStart);
	REG_RMW_FIELD(ah, AR_PHY_RF_CTL2,
		      AR_PHY_TX_END_PA_ON, pModal->txFrameToPaOn);

	ath9k_hw_analog_shift_rmw(ah, AR9287_AN_TOP2,
				  AR9287_AN_TOP2_XPABIAS_LVL,
				  AR9287_AN_TOP2_XPABIAS_LVL_S,
				  pModal->xpaBiasLvl);
}

static u8 ath9k_hw_ar9287_get_num_ant_config(struct ath_hw *ah,
					     enum ath9k_hal_freq_band freq_band)
{
	return 1;
}

static u32 ath9k_hw_ar9287_get_eeprom_antenna_cfg(struct ath_hw *ah,
						  struct ath9k_channel *chan)
{
	struct ar9287_eeprom *eep = &ah->eeprom.map9287;
	struct modal_eep_ar9287_header *pModal = &eep->modalHeader;

	return pModal->antCtrlCommon;
}

static u16 ath9k_hw_ar9287_get_spur_channel(struct ath_hw *ah,
					    u16 i, bool is2GHz)
{
#define EEP_MAP9287_SPURCHAN \
	(ah->eeprom.map9287.modalHeader.spurChans[i].spurChan)

	struct ath_common *common = ath9k_hw_common(ah);
	u16 spur_val = AR_NO_SPUR;

	ath_print(common, ATH_DBG_ANI,
		  "Getting spur idx %d is2Ghz. %d val %x\n",
		  i, is2GHz, ah->config.spurchans[i][is2GHz]);

	switch (ah->config.spurmode) {
	case SPUR_DISABLE:
		break;
	case SPUR_ENABLE_IOCTL:
		spur_val = ah->config.spurchans[i][is2GHz];
		ath_print(common, ATH_DBG_ANI,
			  "Getting spur val from new loc. %d\n", spur_val);
		break;
	case SPUR_ENABLE_EEPROM:
		spur_val = EEP_MAP9287_SPURCHAN;
		break;
	}

	return spur_val;

#undef EEP_MAP9287_SPURCHAN
}

const struct eeprom_ops eep_ar9287_ops = {
	.check_eeprom		= ath9k_hw_ar9287_check_eeprom,
	.get_eeprom		= ath9k_hw_ar9287_get_eeprom,
	.fill_eeprom		= ath9k_hw_ar9287_fill_eeprom,
	.get_eeprom_ver		= ath9k_hw_ar9287_get_eeprom_ver,
	.get_eeprom_rev		= ath9k_hw_ar9287_get_eeprom_rev,
	.get_num_ant_config	= ath9k_hw_ar9287_get_num_ant_config,
	.get_eeprom_antenna_cfg	= ath9k_hw_ar9287_get_eeprom_antenna_cfg,
	.set_board_values	= ath9k_hw_ar9287_set_board_values,
	.set_addac		= ath9k_hw_ar9287_set_addac,
	.set_txpower		= ath9k_hw_ar9287_set_txpower,
	.get_spur_channel	= ath9k_hw_ar9287_get_spur_channel
};